

MONITORING YEAR 5

ANNUAL REPORT

Final

MOORES FORK STREAM MITIGATION PROJECT

Surry County, NC DEQ Contract 6500 DMS Project Number 94709 DWR # 12-0396 USACE Action ID SAW-2011-02257

Data Collection Period: February - September 2020 Draft Submission Date: October 19, 2020 Final Submission Date: December 2, 2020

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 59 Mitigation Project Name DMS ID River Basin Cataloging Unit County

Moores Fork 94709 Yadkin 03040101 Surry USACE Action ID DWR Permit Date Project Instituted Date Prepared Stream/Wet. Service Area 2011-02257 2012-0396 10/18/2010 4/20/2020 Yadkin 03040101

Signature & Date of Official Approving Credit Release

1 - For NCDMS, no credits are released during the first milestone

- 2 For NCDMS projects, the initial credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the IRT by posting it to the DMS portal, provided the following have been met:
- 1) Approved of Final Mitigation Plan
- 2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property.
- 3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan.
- 4) Receipt of necessary DA permit authorization or written DA approval for projects where DA permit issuance is not required.

3 - A 10% reserve of credits is to be held back until the bankfull event performance standard has been met.

Credit Release Milestone	Cool Stream Credits									
Project Credits	Scheduled Releases %	Proposed Releases %	Proposed Released #	Not Approved # Releases	Approved Credits	Anticipated Release Year	Actual Release Date			
1 - Site Establishment	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
2 - Year 0 / As-Built	30.00%	30.00%	3,520.761	0.000	3,520.761	2016	9/30/2016			
3 - Year 1 Monitoring	10.00%	10.00%	1,160.987	37.800	1,123.187	2017	8/8/2017			
4 - Year 2 Monitoring	10.00%	10.00%	1,160.987	0.000	1,160.987	2018	4/25/2018			
5 - Year 3 Monitoring	10.00%	10.00%	1,160.987	1,160.987	0.000	2019	7/15/2019			
6 - Year 4 Monitoring	5.00%	5.00%	1,741.480	1,741.480	0.000	2020	4/20/2020			
7 - Year 5 Monitoring	10.00%					2021				
8 - Year 6 Monitoring	5.00%					2022				
9 - Year 7 Monitoring	10.00%					2023				
Stream Bankfull Standard	10.00%	10.00%	1,160.987	0.000	1,160.987	2018	4/25/2018			
			Totals		6,965,921					

Total Gross Credits	11,609.866
Total Unrealized Credits to Date	0.000
Total Released Credits to Date	6,965.921
Total Percentage Released	60.00%
Remaining Unreleased Credits	4,643.945

Notes

4/25/2018: Adjustment required due to IRT concerns on how the as-built credits were calculated

7/15/2019: IRT did not approve any credit releases for this project in 2019.

4/20/2020: Repair is currently underway on this project. IRT requested a site visit once repairs are complete and decided no release for this year.

Contingencies (if any)

Project Quantities

Mitigation Type	Restoration Type	Physical Quantity
Cool Stream	Restoration	2,071.000
Cool Stream	Enhancement I	6,592.000
Cool Stream	Enhancement II	6,645.000
Cool Stream	Preservation	4,279.000

Mitigation Project Name USACE Action ID 2011-02257 Moores Fork DMS ID 94709 DWR Permit 2012-0396 Yadkin **Date Project Instituted River Basin** 10/18/2010 **Cataloging Unit** 03040101 **Date Prepared** 4/20/2020 County Surry Stream/Wet. Service Area Yadkin 03040101 Stream Stream Restoration Debits Restoration Equivalent Credits Credits Beginning Balance (mitigation credits) 10,754.066 855.800 **Released Credits** 6,452.445 513.480 Unrealized Credits 0.000 0.000 USACE Permit DCM Permit DWR TIP # **Owning Program** Req. Id Project Name Permit # # # Statewide Stream & R-2239C 1999-0492 REQ-004196 DOT - Widening of US 421 1999-20833 3.50 Wetland ILF Program Statewide Stream & R-2239C 1999-0492 REQ-004196 DOT - Widening of US 421 1999-20833 635.400 Wetland ILF Program Statewide Stream & REQ-004196 R-2239C DOT - Widening of US 421 1999-20833 1999-0492 168.671 Wetland ILF Program Statewide Stream & REQ-004200 R-2240 DOT - Widening of US 421 1996-01926 1999-0995 0.002 Wetland ILF Program Statewide Stream & 2007-03968 2007-1995 REQ-005025 Hartley Drive Extension 13.000 Wetland ILF Program Statewide Stream & 492.000 REQ-006316 Courthouse Drive Extension 2014-01300 2015-0402 Wetland ILF Program Mt. Airy Surry County Airport Statewide Stream & REQ-006696 2010-01397 2011-0156 1,334.000 Wetland ILF Program Improvements Phase 2 Mt. Airy Surry County Airport Statewide Stream & REQ-006697 2010-01397 2011-0156 951.000 Wetland ILF Program Improvements Phase 3 Statewide Stream & REQ-004196 R-2239C DOT - Widening of US 421 1999-20833 1999-0492 256.740 Wetland ILF Program Statewide Stream & R-2239C DOT - Widening of US 421 REQ-004196 1999-20833 1999-0492 46.390 Wetland ILF Program Statewide Stream & REQ-005025 Hartley Drive Extension 2007-03968 2007-1995 207.000 Wetland ILF Program **Total Credits Debited** 3,597.574 510.130 2,854.871 3.350 Remaining Available balance (Released credits)

Demoining belower (Unreleased andite)

Remaining balance (Unreleased credits)

60

4,301.621

342.320

PREPARED BY:

Wildlands Engineering, Inc.

1430 South Mint Street, Suite 104 Charlotte, NC 28203 Phone: 704.332.7754 Fax: 704.332.3306

December 2, 2020

Mr. Matthew Reid Western Project Manager Division of Mitigation Services 15 Buckhorn Gap Road Biltmore Lake, NC 28715

RE: Moores Fork Stream Mitigation Project Yadkin River Basin – CU# 03040101 Surry County, North Carolina NCEEP Project # 94709 Contract No. 6500

Dear Mr. Reid:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments from the Draft Monitoring Year 5 report for the Moores Fork Stream Mitigation Project. The following Wildlands responses to DMS's report comments are noted in italics lettering.

DMS comment; 1.2.2 Vegetation Areas of Concern: The invasive species contractor continued to treat invasives at the site throughout the monitoring year. Treatments occurred in May, June, and July during 2020. DMS will continue to treat invasives at the site through closeout.

Wildlands response; Text was added to section 1.2.2 to specify the months when invasive treatments occurred in 2020.

DMS comment; Table 2: Please add the following activities:

• Invasive Species Treatment - May, June and July 2020

Wildlands response; The invasive species treatment dates have been added to Table 2.

DMS comment; Please include the attached invasive species treatment log in the appendix for the updated final report.

Wildlands response; The invasive species treatment log has been included in Appendix F.

DMS comment; CCPV: Thanks for providing updated invasive species polygons. Please continue to update as treatment occurs and populations are reduced. This map is a useful tool for the contractor treating the site.

Wildlands response; You're welcome. Wildlands will continue to update the CCPV figures as treatment of invasive species occurs, and populations are reduced.

DMS comment; As noted in the report, DMS has completed a repair plan for nine areas of concern on the site. This repair will occur in January 2021. DMS will update Wildlands as the repair is completed and provide asbuilt/info to be included in the MY6 report.

Wildlands response; Text was updated in section 1.2.4 to indicate that the repair will occur in January 2021. The repair as-bult information will be included in the MY6 report.

DMS comment; Digital Files: The Table 7 report from the CVS entry tool does not match Table 10 included in the monitoring report. Please ensure that the CVS tool includes all of the relevant data to replicate what is being included in the monitoring report.

Wildlands response; The "Table 7" report from the CVS entry tool seems to exclude new monitored stems (from supplemental plantings) that were added in MY5 to the "Planted woody stem entry" tab. However, using the "Simple reports" spreadsheet generated from the CVS entry tool matches Table 10 included in the monitoring report.

DMS comment; As Wildlands has done in the past, please include a response to the comment letter and how/where the comments were addressed. Please insert this letter directly behind the cover page in the final deliverables. The IRT has requested that we include this letter with the final deliverables. The response letter will need to be included with all future monitoring deliverables.

Wildlands response; The comment response letter has been inserted behind the cover page in the final deliverables.

Enclosed please find one (1) hard copy and one (1) electronic copy on CD of the Final Monitoring Report. Please contact me at 704-941-9093 if you have any questions.

Sincerely,

Kirsten Y. Stembert

Kirsten Y. Gimbert Project Manager kgimbert@wildlandseng.com

EXECUTIVE SUMMARY

The North Carolina Department of Environmental Quality (NCDEQ) Division of Mitigation Services (DMS) restored, enhanced, and preserved approximately 19,587 linear feet (LF) of Moores Fork and 13 unnamed tributaries (UTs), provided livestock fencing and alternative water sources to keep livestock out of the streams, removed invasive plant species across the project, and established native riparian buffers. The restoration project was developed to fulfill stream mitigation requirements accepted by the DMS for the Upper Yadkin River Basin (Cataloging Unit 03040101). The Moores Fork Stream Mitigation Project (Site) will net 11,587.543 stream mitigation units through a combination of restoration, enhancement I and II, and preservation.

The Site is within a Targeted Local Watershed (TLW) identified in the Upper Yadkin River Basin Restoration Priority (RBRP) plan (NCDENR, 2009). The RBRP identified the Stewarts Creek 14-digit HUC 03040101100010 as a TLW. Agriculture is the primary land use in the watershed (36% agriculture land cover and only 3% impervious cover), and the RBRP identified degraded riparian buffers as the major stressor to water quality. The Site is also located within the identified as a priority subwatershed for stream restoration and agricultural BMPs during the initial Upper Yadkin-Ararat River local watershed planning (LWP).

The final design was completed in June of 2013. Construction activities and as-built surveys were completed in December of 2014. Planting of the site took place in February of 2015. A large flood event with an estimated return interval of 50 to 100 years occurred at the site on April 18-19, 2015, causing damage to the main stem of Moores Fork. This damage was repaired in March and April of 2016, and a second as-built survey was performed on the repaired areas in April of 2016. The baseline monitoring efforts began in June of 2016 and monitoring year one efforts were initiated in late October of 2016. The Monitoring Year (MY) 5 activities were completed in September 2020.

Overall, the Site is on track to meet monitoring success criteria for MY7 vegetation, geomorphology, and hydrology performance standards. The MY5 vegetation survey resulted in an average stem density of 479 planted stems per acre. The Site has met the MY5 density requirement of 260 planted stems per acre, with all 12 plots (100%) individually meeting this requirement. The MY5 vegetation assessment revealed that invasive plant populations have been significantly reduced due to ongoing treatment. A few instances of localized bank erosion and structure instability are present on the Site and are likely to require the implementation of maintenance measures to deter further degradation. During MY5, at least two bankfull events occurred on Moores Fork and one bankfull event occurred on Silage Tributary. The performance standard of two recorded bankfull events in separate monitoring years was met in MY3 for Moores Fork and Silage Tributary.

MOORES FORK STREAM MITIGATION PROJECT

Year 5 Monitoring Report

TABLE OF CONTENTS

Section 1:	PROJECT OVERVIEW	1-1
1.1 Pro	pject Goals and Objectives	1-1
1.2 Mo	onitoring Year 5 Data Assessment	1-2
1.2.1	Vegetation Assessment	1-2
1.2.2	Vegetation Areas of Concern and Management Activity	1-3
1.2.3	Stream Assessment	1-3
1.2.4	Stream Areas of Concern and Management Activity	1-3
1.2.5	Hydrology Assessment	1-4
1.3 Mo	onitoring Year 5 Summary	1-4
Section 2:	METHODOLOGY	2-1
Section 3:	REFERENCES	3-1

APPENDICES

General Tables and Figures
Project Vicinity Map
Project Component/Asset Map
Project Components and Mitigation Credits
Project Activity and Reporting History
Project Contacts Table
Project Baseline Information and Attributes
Monitoring Component Summary
Visual Assessment Data
Current Condition Plan View Maps
Visual Stream Morphology Stability Assessment Table
Vegetation Condition Assessment Table
Stream Photographs
Vegetation Photographs
Vegetation Plot Data
Vegetation Plot Criteria Attainment
CVS Vegetation Plot Metadata
Planted and Total Stem Counts (Species by Plot with Annual Means)
Morphological Summary Data and Plots
Baseline Stream Data Summary
Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section)
Cross-Section Plots with Annual Overlays
Cross-Section Pebble Count Plots with Annual Overlays
Hydrology Summary Data and Plots
Verification of Bankfull Events
Monthly Rainfall Data
Invasive Species Treatment Logs

Section 1: PROJECT OVERVIEW

The Site was implemented under a design-bid-build contract with DMS in Surry County, NC. The Site is located in the Yadkin River Basin; eight-digit Hydrologic Unit Code (HUC) 03040101 and the 14-digit HUC 03040101100010 (Figure 1). Located in the Piedmont physiographic province (NCGS 2004), the project watershed primarily includes agricultural land cover. The drainage area for the lower end of Moores Fork is 1,527 acres, and the drainage area for Silage Tributary is 156 acres. The Site is located approximately 0.25 mile north of NC 89 on Horton Road. The project site is located on both sides of Horton Road. Latitude and longitude for the site are 36.506671 N and -80.704115 W, respectively (Figure 1).

The NCDEQ DMS restored, enhanced, and preserved approximately 19,587 LF of Moores Fork and 13 unnamed tributaries (UTs), provided livestock fencing and alternative water sources to keep livestock out of the streams, removed invasive plant species across the project, and established native riparian buffers. The restoration project was developed to fulfill stream mitigation requirements accepted by the DMS for the Upper Yadkin River Basin (HUC 03040101). Mitigation work within the Site included restoring and enhancing 15,308 LF and preserving 4,279 LF of stream. The Moores Fork Stream Restoration Project will net 11,587.543 stream mitigation units (SMUs) through a combination of restoration, enhancement I and II, and preservation. Due to overhead utility easements that cross project streams, 7.8 SMUs were removed on Silage Tributary Reach 2 (starting at STA 30+10.49 and ending at STA 30+33.95), 10.4 SMUs were removed on Corn Trib (starting at STA 19+38.58 and ending at STA 19+59.15) as shown in Table 1 of Appendix A.

The final design was completed in June of 2013. Construction activities and as-built surveys were completed in December of 2014. Planting of the site took place in March of 2015. A large flood event with an estimated return interval of 50 to 100 years occurred at the site on April 18-19, 2015, causing damage to the main stem of Moores Fork. This damage was repaired in March and April of 2016, and a second as-built survey was performed on the repaired areas in April of 2016. The baseline monitoring efforts began in June of 2016 and monitoring year one efforts were initiated in late October of 2016. The Monitoring Year 5 monitoring activities were completed in September 2020. More detailed information related to the project activity, history, and contacts can be found in Appendix A, Tables 1 and 2. Directions and a map of the Site are provided in Figure 1 and, project components are illustrated for the Site in Figure 2. Please refer to the Project Component Map (Figure 2) for the stream features and to Table 1 for the project component and mitigation credit information for the Site. This report documents the results of the MY5 monitoring efforts.

1.1 Project Goals and Objectives

Prior to construction activities, dairy and farming operations on the site had deforested riparian buffers and allowed direct livestock access to the stream, leading to elevated temperatures and nutrients. Channel straightening and dredging throughout much of the project had also contributed to channel degradation. Table 11 in Appendix D present the pre-restoration conditions in detail.

This mitigation site is intended to provide numerous ecological benefits within the Yadkin River Basin. The project goals identified in the Mitigation Plan (Confluence, 2012) include:

- Improve water quality in Moores Fork and the UTs through reductions in sediment and nutrient inputs from local sources;
- Create conditions for dynamic equilibrium of water and sediment movement between the supply reaches and project reaches;

- Promote floodwater attenuation and secondary functions associated with more frequent and extensive floodwater contact times;
- Improve in-stream habitat by increasing the diversity of bedform features;
- Enhance and protect native riparian vegetation communities; and
- Reduce fecal, nutrient, and sediment loads to project streams by promoting and implementing livestock best management practices.

The project objectives have been defined as follows:

- Restoration of the dimension, pattern, profile of approximately 1,828 LF of Moores Fork Reach 2 and 243 LF of the Pond Tributary;
- Restoration of the dimension and profile (Enhancement I) of the channel for approximately 2,832 LF of Moores Fork Reach 3, 900 LF of Silage Reach 1, 2,448 LF of Silage Reach 2, 300 LF of Barn Reach 1 and 112 LF of Corn Reach 2;
- Limited channel work coupled with livestock exclusion, gully stabilization, invasive species control and buffer planting (Enhancement II) on approximately 761 LF of Moores Fork Reach 1, 167 LF of Cow Tributary 1, 767 LF of Cow Tributary 2, 3,134 LF of Barn Reach 2, 1,350 LF of Corn Reach 1, and 466 LF of UT1;
- Livestock exclusion fencing and other best management practice installations;
- Invasive plant species control measures across the entire project wherever necessary; and
- Preservation of approximately 4,279 LF of relatively un-impacted forested streams (UTs 2, 3, 6, 7, 8, 9, and 10) in a permanent conservation easement.

1.2 Monitoring Year 5 Data Assessment

Annual monitoring was conducted between February and September 2020 to assess the condition of the project. The stream restoration success criteria for the Site follows the approved performance standards presented in the Moores Fork Stream Mitigation Project Final Mitigation Plan (Confluence, 2012). Annual monitoring will be conducted for seven years to provide a project data chronology that will facilitate an understanding of project status and trends.

1.2.1 Vegetation Assessment

A total of 12 vegetation monitoring plots were established during the baseline monitoring within the project easement areas using a standard 10 by 10 meter plot. Please refer to Figures 3.0-3.6 in Appendix B for the vegetation monitoring locations. At the end of year five of the monitoring period, the vegetation success criterion is the survival of 260 planted stems per acre in the riparian corridor along restored and enhanced reaches. The final vegetation success criterion is the survival of 210 planted stems per acre at the end of year seven of the monitoring period.

The MY5 vegetation survey was completed in August 2020, resulting in an average stem density of 479 planted stems per acre. The Site is exceeding the MY5 density requirement of 260 planted stems per acre, with all 12 plots (100%) individually meeting this requirement. Vegetation plots 2 and 3 have increased densities compared to last year due to supplemental planting and previously missing stems that were found alive this year. Therefore, the site overall has an increased stem density of 4%. The MY5 average stem height for all plots is about 11.9 feet. Approximately 11% of the planted stems scored a vigor of 2, indicating that they have fair plant health with some damage present. Stems with a vigor of 1 that are unlikely to survive next year accounted for roughly 2% of the monitored stems. This low vigor rating is due to damage from storm events, vine strangulation, suffocation from dense herbaceous cover, insects, deer, or other unknown factors. Planted black gum trees (*Nyssa sylvatica*), which are a favorite among the deer, had previously been stunted and are now starting to grow to a height where

they can survive. Desirable volunteer species such as tulip poplar, red maple, river birch, and tulip poplar are present throughout the Site. Please refer to Appendix B for vegetation plot photographs and Appendix C for vegetation data tables.

1.2.2 Vegetation Areas of Concern and Management Activity

Areas of invasive plant populations were identified in MY5 throughout the Site. Species included: kudzu (*Pueraria montana*), Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), Multiflora rose (*Rosa multiflora*), oriental bittersweet (*Celastrus orbiculatus*), morning glory (*Convolvulus sp*.), and English ivy (*Hedera helix*). The invasive treatments that occurred in 2019 and continued in 2020 have caused over a 40% reduction compared to MY4. Currently, less than 2% of the easement acreage is mapped with some invasive species areas of concern. In 2020, invasive treatments occurred in May, June, and July and will continue through closeout. Along the left floodplain of Moores Fork, there continue to be some persistent areas of kudzu and additional pockets discovered in MY5 along the stream banks.

In areas that received supplemental planting in 2019, stems were found to be healthy and stem density appears higher. Isolated bare/poorly vegetated areas observed in MY5 continue to be approving with herbaceous cover becoming established. These vegetation areas of concern are shown in Figures 3.0-3.6 in Appendix B.

1.2.3 Stream Assessment

Morphological surveys for MY5 were conducted in April and June 2020. Overall, surveyed cross-sections along Moores Fork indicate the channel is maintaining stable dimensions. At both Moores Fork riffle cross-section M4 and pool cross-section M6, an increase in cross-sectional area is evident due to stone toe boulder structures that are dislodged at both cross-sections. Alluvial deposition along the banks and floodplain is present along Moores Fork and visible within most cross-sections. However, riffles are maintaining appropriate width-to-depth ratios and pools are maintaining max depths compared to MY0. In addition, MY5 riffle pebble counts along Moores Fork indicate coarser sediment size distribution as compared to MY0. Therefore, Moores Fork appears to be transporting sediment efficiently and functioning as designed.

Along Silage Tributary, the surveyed cross-sections, are representative of vertical and lateral instability observed throughout Silage Tributary Reach 1 and 2. Downcutting present at cross-sections ST2, ST3, and ST6, and bank scour present at cross-sections ST1 and ST5, accounts for the increased channel dimensions as compared to MY0. In general, MY5 riffle pebble counts indicate similar or coarser sediment size distribution as compared to MY0. See section 1.2.4 for further discussion about stream areas of concern along Silage Tributary. Please refer to Appendix D for cross-section plots and morphological summary tables.

1.2.4 Stream Areas of Concern and Management Activity

Stream areas of concern include localized instances of bank instability and sediment deposition. Along Moores Fork, new or expanded areas of bank instability were noted in MY5 (STA 19+10, 43+10, 44+90, and 64+10). At both wetland outlets to Moores Fork below UT8 and UT10, the headcuts have continued to worsen and are migrating further up into the wetlands. Along Moores Fork, a few additional boulder toe structures have shifted resulting in bank scour behind them. However, these stream areas of concern seem to be isolated and not prevalent along Moores Fork.

Along Silage Tributary, several new or expanded areas of bank instability were noted in MY5 (STA 13+40, 21+80, 25+70, 30+30, 32+50, and 37+60) where woody vegetation has failed to become established along the banks. Several structures that were used for grade control along Silage Tributary have been

undermined by flow piping under or around them. The nature of this confined steep valley in combination with flashy runoff from recent numerous storm events has amplified areas of stream instability, as displayed in the surveyed cross-sections along these reaches.

Other stream areas of concern are present in some of the smaller tributaries on the Site. Pond Tributary continues to experience sedimentation along the upper portion, but well-established willows and other woody vegetation are maintaining the channel function. At the project start of Corn Tributary, a significant headcut and erosion around the culvert continues to downcut. These areas will continue to be monitored in future years for signs of accelerated instability.

DMS has contracted with a design firm to develop a repair plan for approximately nine areas of instability throughout the Site. The assessment and design occurred fall/winter 2019 followed by construction that will occur in January 2021. Stream repairs will be captured in the MY7 (2022) geomorphic stream assessment. DMS has also contracted with APHIS to control beaver and dams at the Site in 2019. APHIS removed multiple beaver and dams in 2019 and will continue to monitor the Site for beaver activity through closeout. Stream areas of concern and management activities are shown in Figures 3.0-3.6 in Appendix B.

1.2.5 Hydrology Assessment

Bankfull data collected on February 27 and September 8, 2020 indicate that bankfull events occurred in MY5. At least two bankfull events on Moores Fork and one bankfull event on Silage Tributary were documented with recent alluvial deposits and obvious wracklines in MY5. Monthly rainfall data indicate higher than normal rainfall amounts occurred during the months of February, April, May, and August 2020 (NCCRONOS, 2020). Hydrologic success criteria for the Site states that two bankfull flow events must be documented on restoration reaches within the seven-year monitoring period and must occur in separate years. Five bankfull events have been documented for Moores Fork and four bankfull events have been documented for Silage Tributary in separate years. Therefore, the performance standard for the Site was met in MY3. Refer to Appendix E for hydrologic data and graphs.

1.3 Monitoring Year 5 Summary

Overall, the Site is on track to meet monitoring success criteria for MY7 vegetation, geomorphology, and hydrology performance standards. The MY5 vegetation survey resulted in an average stem density of 479 planted stems per acre. The Site has exceeded the MY5 density requirement of 260 planted stems per acre, with all 12 plots (100%) individually meeting this requirement. Additionally, the MY5 vegetation assessment revealed that invasive plant populations have been significantly reduced due to ongoing treatment. A few instances of localized bank erosion and structure instability are present on the Site and maintenance may be warranted to prevent further degradation. At least two bankfull events occurred on Moores Fork and one bankfull event occurred on Silage Tributary. The performance standard of two recorded bankfull events in separate monitoring years has been met for both Moores Fork and Silage Tributary.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these annual monitoring reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

Section 2: METHODOLOGY

The stream monitoring methodologies utilized in 2020 are based on standard guidance and procedures documents (Rosgen 1996 and USACE 2003). Geomorphic data were collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008). Crest gages were installed in surveyed riffle cross-sections and monitored semi-annually.

Section 3: REFERENCES

Confluence Engineering, PC. 2012. Moores Fork Stream Mitigation Plan. NCEEP, Raleigh, NC.

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique.* Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- North Carolina Climate Retrieval and Observations Network of the Southeast Database (NCCRONOS). 2020. State Climate Office of North Carolina. Version 2.7.2. MT Airy 2 W. Station ID No. 315890. Accessed September 2020.
- North Carolina Division of Water Resources (NCDWR). 2016. Surface Water Classifications. Retrieved from http://deq.nc.gov/about/divisions/water-resources/planning/classification-standards/classifications
- NCDENR. 2009. Upper Yadkin River Basin Restoration Priorities. Retrieved from https://deq.nc.gov/about/divisions/mitigation-services/dms-planning/watershed-planningdocuments/yadkin-river-basin
- North Carolina Geological Survey (NCGS). 2004. Physiography of North Carolina. Map compiled by the Division of Land Resources. Raleigh.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey (USGS), 1998. North Carolina Geology. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geologicalsurvey/

APPENDIX A. General Tables and Figures

Figure 2 Project Component/Asset Map Moores Fork Stream Mitigation Site DMS Project No. 94709 Monitoring Year 5 - 2020

0

700 Feet

Ń

Table 1. Project Components and Mitigation CreditsMoores Fork Stream Mitigation ProjectDMS Project No. 94709Monitoring Year 5 - 2020

Mitigation Credit Summaries ¹								
Туре	Restoration	Enhancement I	Enhancement II	Preservation				
Total	2071.000	5757.790	2902.953	855.800				
Project Component or Reach ID	Stationing	Pre-project Footage or Acreage	Restoration Footage or Acreage	Restoration Level	Restoration or Rest Equiv.	Mitigation Ratio	Mitigation Credits	Notes
Moores Reach 1	STA 989-1750	761	761	N/A	EII	2.5:1	304.400	-
Moores Reach 2	STA 1750-3578	1,636	1,828	P2	R	1:1	1,828.000	-
Moores Reach 3	STA 3578-6410	2,856	2,832	P2/3	EI	1:1	2,821.610	Reduction in 10.39 SMU because of 20' overhead powerline easement
Silage Reach 1	STA 1000-1900	900	900	P1	EI	1:1	900.000	-
Silage Reach 2	STA 1900-4348	2.448	2.448	P3	EI	1.5:1	1.624.180	Reduction in 7.82 SMU because of 20' overhead powerline easement.
Cow Trib 1	STA 1219-1386	167	167	P4	EII	1.5:1	111.333	-
Cow Trib 2	STA 1331-2098	767	767	P4	EII	1.5:1	511.333	-
Pond Trib	STA 1000-1243	194	243	P2	R	1:1	243.000	-
Barn Reach 1	STA 1000-1300	300	300	P3	EI	1:1	300.000	-
Barn Reach 2	STA 1350-3746; STA 4069-4757	3,134	3,134	N/A	EII	2.5:1	1,253.600	-
Corn Reach 1	STA 1000-2350	1,350	1,350	N/A	EII	2.5:1	535.886	Reduction in 4.114 SMU because of 20' overhead powerline
Corn Reach 2	STA 2350-2462	112	112	P3	EI	1:1	112.000	-
UT1	STA 1000-1466	466	466	N/A	EII	2.5:1	186.400	-
Preservation Reaches	UTs 2,3,6,7,8,9,10	4,279	4,279	N/A	Р	5:1	855.800	-
			Length an	d Area Summatio	ns ¹			
Restoration Level	Stream (Linear Feet)	Riparian W	etland (acres)	Non-riparian Wetland (acres)	Buffer (Squ	uare feet)		Upland (acres)
		Riverine	Non-Riverine					
		-						
Restoration	2,071	-	-	-	-	-	-	-
Enhancement		-	-	-	-	-	-	-
Enhancement I	6,592							
Enhancement II	6,645							
Creation		-	-	-			-	-
Preservation	4,279	-	-	-			-	-
High Quality Preservation	-	-	-	-			-	-
	-	-	-	-			-	-

N/A - Not Applicable

¹Project components and mitigation credits reverted back to Mitigation Plan totals as requested by IRT.

Table 2. Project Activity and Reporting History

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Activity or Deliv	erable	Data Collection Complete	Completion or Delivery		
Mitigation Plan		December 2011	November 2012		
Final Design – Construction Plans		N/A	June 2013		
Construction (Repairs)		N/A	December 2014 (April 2016)		
Temporary S&E Mix Applied		N/A	December 2014 (April 2016)		
Permanent Seed Mix Applied		N/A	December 2014 (April 2016)		
Containerized, Bare Root and B&B Planting	gs For Reach/Segments	N/A	February 2015 (April 2016)		
Invasive Species Treatment		May 2016	May 2016		
Receipe Monitoring Document (Year 0)	Vegetation Survey	June 2016	August 2016		
baseline Monitoring Document (rear 0)	Stream Survey	June 2016	August 2010		
Invasive Species Treatment		September 2016	September 2016		
Year 1 Monitoring	Vegetation Survey	October 2016	November 2016		
	Stream Survey	November 2016	November 2010		
Year 2 Monitoring	Vegetation Survey	August 2017	November 2017		
	Stream Survey	July 2017	November 2017		
Invasive Species Treatment		July, Aug, Sept & Nov 2018	November 2018		
Vear 2 Monitoring	Vegetation Survey	August 2018	November 2018		
	Stream Survey	June 2018	November 2018		
Supplemental Planting		March 2019	November 2019		
Beaver/Dam Removal		July 2019	November 2019		
Invasive Species Treatment		Feb, July, & Sept 2019	September 2019		
Year 4 Monitoring	Vegetation Survey	August 2019	November 2019		
	Stream Survey	N/A	November 2015		
Invasive Species Treatment		May, June, & July 2020	July 2020		
Year E Monitoring	Vegetation Survey	August 2020	November 2020		
	Stream Survey	July 2020	November 2020		
Year & Monitoring	Vegetation Survey	2021	November 2021		
	Stream Survey	N/A	November 2021		
Year 7 Monitoring	Vegetation Survey	2022	November 2022		
	Stream Survey	2022	November 2022		

N/A - Not Applicable

Table 3. Project Contacts TableMoores Fork Stream Mitigation ProjectDMS Project No. 94709

Monitoring Year 5 - 2020

Designer	Confluence Engineering, PC
	16 Broad Street
	Asheville, NC 28801
Primary project design POC	Andrew Bick 828-606-0306
Construction Contractor	Carolina Environmental Contracting, Inc.
	150 Pine Ridge Road
	Mount Airy, NC 27030
Construction contractor POC	Wayne Taylor 336-341-6489
Survey Contractor	Turner Land Surveying, PLLC
	PO Box 41023
	Raleigh, NC 27629
Survey Contractor POC	David Turner 919-623-5095
Planting Contractor	Keller Environmental, LLC
	7921 Haymarket Lane
	Raleigh, NC 27615
Planting Contractor POC	Jay Keller 919-749-8259
Seeding Contractor	Carolina Environmental Contracting, Inc.
	150 Pine Ridge Road
	Mount Airy, NC 27030
Seeding Contractor POC	Wayne Taylor 336-341-6489
Seed Mix Sources	Green Resources 336-855-6363
Nursery Stock Suppliers	Foggy Mountain Nursery 336-384-5323
Monitoring Performers	Wildlands Engineering, Inc.
	1430 South Mint Street, Ste 104
	Charlotte, NC 28205
	704.332.7754
Monitoring POC	Kirsten Gimbert 704-332-7754

Table 4a. Project Baseline Information and Attributes

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Priorie Nome: and Margine Project Section 2000 (Section 2000) (Sectio	Project Information											
Convity. ymp second 14 gal part of the part	roject Name Moores Fork Stream Mitigation Project											
migration100Project Vatarsheld Summary InformationProject Vatarsheld Summary InformationProject Vatarsheld Summary InformationRestanceBane hamfedmaSummary InformationBane hamfedmaSummary InformationSummary Information <th c<="" td=""><td>County</td><td colspan="8">Surry</td></th>	<td>County</td> <td colspan="8">Surry</td>	County	Surry									
Project Variants Project Varian	Project Area (acres)	~140										
Project Watershed Summary Information 3 Project Water Sum 3 Project Wa	Project Coordinates (latitude and longitude) 36.506671 N, 80.704115 W											
mysographic ProvincePerformVarialG2040.01USDS typicalings Line LargingG2040.01Star generationYee Dee Nerro Sabanin 03.07.02Prograph Drining Mersel1.27 (2.3 m²)Star Dial Star (2.3 m²)SStar Dial Star (2.3 m²)SPrograph Drining Mersel1.27 (2.3 m²)Star Dial Star (2.3 m²)SStar (2.3 m²)S<	Project Watershed Summary Information											
Numer base Yable Second Seco	hysiographic Province Piedmont											
USDS by/origination DSDS hydroinger Unit 3-6-gir DSDS havan Per Der Nerr Subahan 0-37-70UU <th< td=""><td>River Basin</td><td>Yadkin</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	River Basin	Yadkin										
USAS hydroinger Unit 14-digsOPDA ensity visuation 0.0-U = U = U = U = U = U = U = U = U = U =	USGS Hydrologic Unit 8-digit	03040101										
DWN Sybeam Pee Dee Bive Subjeant 0: 0 - U = U = U = U = U = U = U = U = U = U	USGS Hydrologic Unit 14-digit	03040101100010										
Note: Construction (i) 5237 ac (20 mm ²) Second and Pature. Confice	DWR Sub-basin	Pee Dee River Subbasin 03-07-0	2									
Project Datage Area Percentage of impervious Area CGIA Land Use Classification Organization destrum, Confiner 4-markal Operations CGIA Land Use Classification Cover Trib 1 Cover Trib 2 Reach Surver, Confiner 4-markal Operations Sillage Cover Trib 1 Cover Trib 2 Langth of Basch Post Construction [U1] 2,656 2,856 3,348 167 767 Validy classification (Stogen) VIII VIII VIII III III Drinnage area facresi 3,133 3,527 155 2.0 2.35 MCDVQ Value functionation (Stogen) VIII VIII WS-IV WS-IV WS-IV WS-IV MCDVQ Value functionation (Stogen) 0.56 6.6 6.6 6.6 6.6 MCDVQ Value Classification C.4 C.4 6.4 6.6 6.6 Outderstription (Rogen) C.4, F.E C.0, F.E Fe.0.2 Fe.0.2 Fe.0.2 Dranage class well draned well draned<	Project Drainage Area (acres)	1,527 ac (2.39 mi ²)										
Conduct and basine, confined armad Operations Compared armad Armad Operations Reach Summary Commary Commary <td>Project Drainage Area Percentage of Impervious Area</td> <td><5%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Project Drainage Area Percentage of Impervious Area	<5%										
Parametra Mores for Reach 12 Norme for Reach 12 Subsection 12	CGIA Land Use Classification	Cropland and Pasture, Confined	Animal Operations									
Parameters Moores Fork Reach 18.2 Norws Fork Reach 19.2 Silage Cw Trib 1 Cow Trib 2 tength of Reach Post Construction (if) 2,636 2,885 3,348 1.67 767 Valley classification (Reagen) 1,133 3.527 156 4 16 Drainage area (Larsen) 1,133 3.527 156 4 16 NCDW Cateron Methification score 35 34.5 23.5 2.02 23.5 MODRO Meter Country Clossification WS-IV WS-IV WS-IV WS-IV WS-IV Morphological Description (Roogen stream type) C4 C4 G4 G6 G5 G5 <th></th> <th>Reach Sum</th> <th>mary Information</th> <th></th> <th></th> <th></th> <th></th> <th></th>		Reach Sum	mary Information									
langen d Reach Post Construction (L/)2,6362,8873,484107767Viller classification (Rospen)VIIIVIIIIII/VIIIIIDrainag area (crea)1,1931,5271.5641.1NCDW Cartean (dentification score3534.52.52.02.3.5NCDW Cartean (dentification scoreWS-IVWS-IVWS-IVWS-IVWS-IVMCDW Cartean (dentification score3534.52.52.02.3.5NCDW Cartean (dentification scoreWS-IVWS-IVWS-IVWS-IVWS-IVMORD (bolgcal Description (Rosgen stream type)C.4C.4G.6G.6G.6Underlying mapped solisC.4, Fif.C.4, Fif.Fel2Fel2Fel2Drainage classmoth hydricnot hydricnot hydricnot hydricNot hydricSolip der statusnot hydricnot hydricnot hydricnot hydricNot hydricSolip der statusNot in SFMANot in SFMANot in SFMANot in SFMANot in SFMANative wegetation communityFelsic Mesic ForestFelsic Mesic ForestFelsic Mesic ForestFelsic Mesic ForestFelsic Mesic ForestParametersWetland 1Wetland 20.050.050.050.05Sta d' Wetland (arces)non-freerineriparian non-freerineriparian non-freerineriparian non-freerineMappe classwell drainedwell drainedwell drainedwell drainedwell drainedSta d' Wetla	Parameters	Moores Fork Reach 1 & 2	Moores Fork Reach 3	Sil	age	Cov	v Trib 1	Cow Trib 2				
Valley classification (Rogen)VIIII.II.II.II.II.II.II.II.II.II.II.II.II.II.II.II.II.II.II.III.	Length of Reach Post Construction (LF)	2,636	2,885	3,3	348		167	767				
Damage area (acres) 1.93 1.927 36 36 36 36.5 32.5 2.25. 2.00 2.35.5 NCDWQ dreen duality Classification WS-IV WS-IV WS-IV WS-IV WS-IV WS-IV MS-IV Morp diagla Description (flogen stream type) C.4 C.4 C.4 G.4 G.4 G.5 G.5 Damage dass Well drained Well draine	Valley classification (Rosgen)	VIII	VIII	II,	/IV		II	11				
NCMQ stram identification score 35 34.5 23.5 20 23.5 NCMQ Vart Calling Gassfitation score WS /V WS /V WS /V WS /V WS /V Morphological Description (Rosgen stream type) C4 C4 C4/L C5 G5 Evolutionary trend C.F F.F F.F F.F F.F C.F C.F C.F F.F F.F	Drainage area (acres)	1,193	1,527	1	56		4	16				
NCDWQ Water Quality ClassificationWS-IVMS-IV <t< td=""><td>NCDWQ stream identification score</td><td>35</td><td>34.5</td><td>23</td><td>3.5</td><td></td><td>20</td><td>23.5</td></t<>	NCDWQ stream identification score	35	34.5	23	3.5		20	23.5				
Morpholigial Description (Respen stream type) C4 C4 C4/C4 C5/C	NCDWQ Water Quality Classification	WS-IV	WS-IV	WS	5-IV	v	VS-IV	WS-IV				
Evolutionary trend C-F G-F G-F G G Underlying applesions CCA, Fac C-A, Fac FeD2 FeD2 FeD2 Drainage class mot hydric not hydric mot hydric mot hydric mot hydric Soli Hydric status mot hydric not hydric mot hydric mot hydric mot hydric Sole 0.006 0.006 0.005 0.056 0.036 Sole Not in SFHA N	Morphological Description (Rosgen stream type)	C4	C4	G4	/C4		G5	G5				
Underlying mapped soilsCGA, FSECGA, FSEFE02FE02FE02FE02Drainage classwell drainedwell drainedwell drainedwell drainedfeld cancedwell drainedfeld cancedwell drainedfeld cancedwell drainedwell drainedfeld cancednot hydricnot hydricfelsic Mesic ForestFelsic Mesic Fore	Evolutionary trend	C-F	C-F	G	-F		G	G				
Drainage class well drained Not In SFHA	Underlying mapped soils	CsA, FsE	CsA, FsE	Fe	D2	F	FeD2	FeD2				
Soli Hydric Soli point statusnot hydric not hydricnot hydric 	Drainage class	well drained	well drained	well d	rained	well	drained	well drained				
Slope 0.008 0.008 0.009 0.05 0.039 0.039 PEMA classification Mot in SFHA Not in S	Soil Hydric status	not hydric	not hydric not hydric not hydric not hydric not hydric									
refunct communityNot in SHA Polici Mosife ForestNot in SHA Pelici Mesic ForestNot in SHA Pelici Me	Slope	0.008 0.006 0.030 0.056 0.038										
Native vegetation communityPesic Mesic PorestPesic Mesic Porest <td>FEMA classification</td> <td>NOT IN SFHA</td> <td>Not in SFHA</td> <td>Not in</td> <td>SFHA</td> <td>Not</td> <td></td> <td>Not in SFHA</td>	FEMA classification	NOT IN SFHA	Not in SFHA	Not in	SFHA	Not		Not in SFHA				
Wetland Summary Information000Wetland Summary InformationWetland 1Wetland 2Wetland 4Size of Wetland (acres)0.490.040.050.15Size of Wetland (acres)0.150.150.15Wetland Summary Informationriparian non-riverineriparian non-riverineriparian non-riverineriparian non-riverineriparian non-riverineriparian non-riverineWetland 4Metland Summary Information0.040.05Wetland 40.490.040.05Wetland 1Wetland 1Wetland 1Wetland 1Wetland 1Wetland 1Wetland 1Wetland 1Wetland 10.15Mation Colspan="2"Sign colspan="2"Sign colspan="2" <th c<="" td=""><td>Native vegetation community</td><td>Feisic Mesic Forest</td><td>Feisic Mesic Forest</td><td>Feisic Me</td><td>SIC Forest</td><td>Feisic IV</td><td>lesic Forest</td><td>Feisic Mesic Forest</td></th>	<td>Native vegetation community</td> <td>Feisic Mesic Forest</td> <td>Feisic Mesic Forest</td> <td>Feisic Me</td> <td>SIC Forest</td> <td>Feisic IV</td> <td>lesic Forest</td> <td>Feisic Mesic Forest</td>	Native vegetation community	Feisic Mesic Forest	Feisic Mesic Forest	Feisic Me	SIC Forest	Feisic IV	lesic Forest	Feisic Mesic Forest			
Wetland Summary mornationParametersWetland 1Wetland 2Wetland 2Wetland 1Barameters0.490.040.080.15Size of Wetland (arees)riparian non-riverineriparian non-riverineriparian non-riverineMapped Soil SeriesFsEFsECsAFsE & CsADrainage classwell drainedwell drainedwell drainedwell drainedSoil Hydric Statusnot hydricnot hydricnot hydricnot hydricSource of HydrologyUT9 & UT10UT8Toe seepToe seepHydrologic ImpairmentnonenonenoneNoneNative vegetation communityDist. Small Stream/Dist. Small Stream/Dist. Small Stream/Narrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP Forest00Percent composition of exotic invasive vegetation00 <td>Percent composition of exotic invasive vegetation</td> <td>Metland Cur</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td>	Percent composition of exotic invasive vegetation	Metland Cur			0		0	0				
ParametersWetland 1Wetland 2Wetland 3Wetland 4Size of Wetland (acres)0.490.040.080.15Size of Wetland Typeriparian non-riverineriparian non-riverineriparian non-riverineMapped Sol SeriesFsEFsECsASec SADrainage Casswell drainedwell drainedwell drainedwell drainedSource of HydrologyUT9 & UT10UT8Toe secNoneSource of HydrologyUT9 & UT10UT8Toe secNoneNative vegetation communityDist. Small Stream/ Narrow FP ForestDist. Small Stream/ Narrow FP ForestDi		wetiand Sur	nmary information				<u> </u>					
Size of wetland (acres) 0.49 0.04 0.08 0.08 0.15 Wetland Typeriparian non-riverineriparian non-riverineNet Non-riverineNe	Parameters	Wetland 1	Wetland	Wetland 2			3	Wetland 4				
Wetland Typeriparian non-riverineriparian non-riverine <t< td=""><td>Size of Wetland (acres)</td><td>0.49</td><td>0.04</td><td></td><td colspan="3">0.08</td><td>0.15</td></t<>	Size of Wetland (acres)	0.49	0.04		0.08			0.15				
Mapped Soil SeriesFSEC SAFSE & CSADrainage classwell drainedwell drainedwell drainedwell drainedSoil Hydric Statusnot hydricnot hydricnot hydricnot hydricSource of HydrologyUT9 & UT10UT8Toe sepToe seepHydrologic ImpairmentnonenonenonenoneNative vegetation communityDist. Small Stream/ Narrow FP ForestDist. Small Stream/ Stream/ Narrow FP ForestDist. Small S	Wetland Type	riparian non-riverine	riparian non-r	iverine	riparian non-riverine			riparian non-riverine				
Drainage classwell drainedwell drainedwell drainedwell drainedSoil Hydric Statusnot hydricnot hydricnot hydricnot hydricSource of HydrologyUT9 & UT10UT8Toe sepToe sepHydrologic ImpairmentnonenonenonenoneNative vegetation communityDist. Small Stream/ Narrow FP ForestDist. Small Stream/ Stream/ Narrow FP ForestDist. Small Stream/ Stream/Dis	Mapped Soil Series	FsE	FsE			CsA		FsE & CsA				
Soil Hydric Statusnot hydricnot hydricnot hydricnot hydricSource of HydrologyUT9 & UT10UT8Toe seepToe seepHydrologic ImpairmentnonenonenonenoneNative vegetation communityDist. Small Stream/ Narrow FP ForestDist. Small Stream/ Stream/ Narrow FP ForestDist. Smal	Drainage class	well drained	well drain	ied	w	ell drained	d	well drained				
Narrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestDist. Small Stream/ Narrow FP ForestDist. Small Stream/ Stream/ Narrow FP ForestDist. Small Stream/ Stream/ Narrow FP Forest <td>Soil Hydric Status</td> <td>not hydric</td> <td>not hvdr</td> <td>ic</td> <td></td> <td>not hydric</td> <td></td> <td>not hydric</td>	Soil Hydric Status	not hydric	not hvdr	ic		not hydric		not hydric				
Native vegetation communityNoneNoneNoneNoneNoneNative vegetation communityDist. Small Stream/ Narrow FP ForestDist. Small Stream/ NoneDist. Small Stream/ NoneDist. Small Stream/ NoneDist. Small Stream/ NoneDist. Small Stream/ NoneDist. Small Stream/ None <td>Source of Hydrology</td> <td></td> <td>1178</td> <td></td> <td></td> <td></td> <td></td> <td>Toe seen</td>	Source of Hydrology		1178					Toe seen				
IndiceIndiceIndiceIndiceIndiceIndiceIndiceNation eventsDist. Small Stream/ Narrow FP ForestDist. Small Stream/ Narrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP Forest000<	Hydrologic Impairment	015 0 0110	010			nono		100 3000				
Native vegetation community Natrow FP ForestDist. Small Stream/ Dist. Small Stream/ Narrow FP ForestDist. Small Stream/ ForestDist. Small Stream/ <b< td=""><td></td><td>lione</td><td>none</td><td></td><td></td><td>none</td><td></td><td>Dist. Cruell Streem (</td></b<>		lione	none			none		Dist. Cruell Streem (
Narrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestNarrow FP ForestPercent composition of exotic invasive vegetation00000 Regulatory Constitutory ConstitutoryMarrow FP ForestOperationMarrow FP ForestNarrow FP ForestNarrow FP ForestRegulationOperationsMarrow FP ForestApplicable?Resolved?Subject ConstitutionMarrow FP ForestApplicable?Resolved?Subject ConstitutionMarrow FP ForestApplicable?Resolved?Subject ConstitutionMarrow FP ForestMarrow FP ForestMarrow FP ForestMarrow FP ForestApplicable?Resolved?Subject ConstitutionMatrow FP ForestMatrow FP F	Native vegetation community	Dist. Small Stream/	Dist. Small St	ream/	Dist.	Small Stre	am/	Dist. Small Stream/				
Percent composition of exotic invasive vegetation00000RegulationRegulationQapplicable?Resolved?SupprentationWaters of the United States – Section 404YSAW-2011-02257YUSACE ID No. SAW-2011-02257Waters of the United States – Section 401YYVDWR # 12-0396Endangered Species ActYYCDWR # 12-0396Historic Preservation ActYYYCoastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)NN/AFEMA Floodplain ComplianceNN/ACEssential Fisheries HabitatNN/AC		Narrow FP Forest	Narrow FP F	orest	Nar	row FP For	rest	Narrow FP Forest				
Regulatory Considerations Regulation Applicable? Resolved? Supporting Documentation Waters of the United States – Section 404 Y USACE ID No. SAW-2011-02257 Waters of the United States – Section 401 Y Y USACE ID No. SAW-2011-02257 Waters of the United States – Section 401 Y Y NCDWR # 12-0396 Endangered Species Act Y Y CE Approved 12/21/11 Historic Preservation Act N N/A - Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA) N N/A - FEMA Floodplain Compliance N N/A - - Essential Fisheries Habitat N N/A - -	Percent composition of exotic invasive vegetation	0	0			0		0				
RegulationApplicable?Resolved?Supporting DocumentationWaters of the United States - Section 404YVSACE ID No. SAW-2011-02257Waters of the United States - Section 401YYNCDWR # 12-0396Endangered Species ActYYCE Approved 12/21/11Historic Preservation ActNN/A-Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)NN/A-FEMA Floodplain ComplianceNN/AEssential Fisheries HabitatNN/A		Regulator	y Considerations		r							
Waters of the United States – Section 404YUSACE ID No. SAW-2011-02257Waters of the United States – Section 401YYNCDWR # 12-0396Endangered Species ActYYCE Approved 12/21/11Historic Preservation ActNN/A-Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)NN/A-FEMA Floodplain ComplianceNN/A-Essential Fisheries HabitatNN/A-	Regulation		Applicab	le?	Resolve	ed?	Suppo	rting Documentation				
Waters of the United States – Section 401 Y N CDWR # 12-0396 Endangered Species Act Y Y CE Approved 12/21/11 Historic Preservation Act N N/A - Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA) N N/A - FEMA Floodplain Compliance N N/A - - Essential Fisheries Habitat N N/A - -	Waters of the United States – Section 404		Y		Y		USACE I	D No. SAW-2011-02257				
Endangered Species Act Y Y CE Approved 12/21/11 Historic Preservation Act N N/A - Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA) N N/A - FEMA Floodplain Compliance N N/A - Essential Fisheries Habitat N N/A -	Waters of the United States – Section 401		Y		Y		N	CDWR # 12-0396				
Historic Preservation Act N N/A - Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA) N N/A - FEMA Floodplain Compliance N N/A - Essential Fisheries Habitat N N/A -	Endangered Species Act		Y		Y		CF	Approved 12/21/11				
Inspire reservation act IN IN/A IN/A Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA) N N/A FEMA Floodplain Compliance N N/A Essential Fisheries Habitat N N/A					NI / A		527					
Codeside Zuite Management Act (CZMA)/ Codeside Area Management Act (CAMA) N N/A	Constal Zana Managament Act (CZMAN) Constal Act	nont Act (CANAA)	N		N/A			-				
FEMA Floodplain Compliance N N/A - Essential Fisheries Habitat N N/A -	Coastal zone Management Act (CZMA)/ Coastal Area Manager	nent Act (CAMA)	N		N/A			-				
Essential Fisheries Habitat N N/A -	FEMA Floodplain Compliance		N		N/A			-				
	Essential Fisheries Habitat		N		N/A			-				

N/A Not-applicable

Table 4b. Project Baseline Information and Attributes

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 5 - 2020

Project Information										
Project Name	Moores Fork Stream Mitigation Proje	iect								
County	Surry	urry								
Project Area (acres)	~140	~140								
Project Coordinates (latitude and longitude)	36.506671 N, 80.704115 W									
	Project Watershed Sur	mmary	Information							
Physiographic Province	Piedmont									
River Basin	Yadkin									
USGS Hydrologic Unit 8-digit	03040101									
USGS Hydrologic Unit 14-digit	03040101100010									
DWR Sub-basin	Pee Dee River Subbasin 03-07-02									
Project Drainage Area (acres)	1,527 ac (2.39 mi ²)									
Project Drainage Area Percentage of Impervious Area	<5%									
CGIA Land Use Classification	Cropland and Pasture, Confined Anir	mal Opera	ations							
	Reach Summary	/ Inforn	nation							
Parameters	Pond Trib	Barr	n Reach 1 & 2	Corn Re	each 1 & 2	UT1				
Length of Reach Post Construction (LF)	243		3,434	1	452	466				
Valley classification (Rosgen)	VIII		IV		IV	IV				
Drainage area (acres)	27		184		30	6				
NCDWQ stream identification score	20		36.5		21	23				
NCDWQ Water Quality Classification	WS-IV		WS-IV	W	/S-IV	WS-IV				
Morphological Description (Rosgen stream type)	B4/5		G4		G4	B4				
Evolutionary trend	B-C-F		G-F (G-F	-				
Underlying mapped soils	CsA		FeD2, FsE	Cs	A, FSE	FeD2				
Drainage class	well drained	w	vell drained	well	drained	well drained				
Soil Hydric status	not hydric		not hydric	not	hydric	not hydric				
Slope	0.029		0.025	0	.057	0.040 +/-				
FEMA classification	Not in SFHA	Ν	lot in SFHA	Not	n SFHA	Not in SFHA				
Native vegetation community	Felsic Mesic Forest	Felsi	c Mesic Forest	Felsic M	esic Forest	Felsic Mesic Forest				
Percent composition of exotic invasive vegetation	0		0		0	0				
	Wetland Summar	ry Infoi	mation							
Parameters	Wetland 5		Wetland	6						
Size of Wetland (acres)	0.03		0.06							
Wetland Type	riparian non-riverine		riparian non-ri	verine						
Mapped Soil Series	Mapped Soil Series FeD2									
Drainage class well drained well drained										
Soil Hydric Status	ic Status not hydric not hydric									
Source of Hydrology	Toe Seep		Toe Seep							
Hydrologic Impairment	none		none							
Native vegetation community	Dist. Small Stream/		Dist. Small Str	eam/						
	Narrow FP Forest		Narrow FP Fo	rest						
Percent composition of exotic invasive vegetation 0 0										

N/A Not-applicable

Table 5. Monitoring Component Summary

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

	Quantity/ Length by Reach														
Parameter	Monitoring Feature	Moores Reach 1	Pond Trib	Moores	Corn Reach 1	Corn Reach 2	Moores	Silage Boach 1	Silage Boach 2	UT1	Cow Trib 1	Cow Trib 2	Barn 1	Barn 2	Frequency
		Reach I		Reach 2			Reach 5	Reactini	Reach 2						
Dimension	Riffle XS			2			4	1	3						Years 1, 2, 3, 5, 7
Dimension	Pool XS			1			2	1	2						Years 1, 2, 3, 5, 7
Substrate	100 Pebble Count			2			4	1	3						Annual
Hydrology	Crest Gage			1					1			_		_	Semi-Annual
Vegetation	Vegetation Plots			4			3	1	2			1	1		Annual
Visual Assessment	Project Site	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Semi-Annual
Reference Photos	Permanent Photo Points	2	2	11	1	2	19	6	12	2	2	4	3	3	Annual

APPENDIX B. Visual Assessment Data

0 300 600 Feet

Figure 3.0 Current Condition Plan View (Key) Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Figure 3.1 Current Condition Plan View (Sheet 1 of 6) Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

0 150 300 Feet

A M Figure 3.2 Current Condition Plan View (Sheet 2 of 6) Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

WILDLANDS ENGINEERING

0 250

500 Feet

Ń

Figure 3.3 Current Condition Plan View (Sheet 3 of 6) Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Figure 3.4 Current Condition Plan View (Sheet 4 of 6) Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Figure 3.5 Current Condition Plan View (Sheet 5 of 6) Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Figure 3.6 Current Condition Plan View (Sheet 6 of 6) Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Table 6a. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 5 - 2020

Moores Fork Reach 1 (Assessed Length : 761 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	4	4			100%			
1. Bed	2 Maandar Daal Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	5	5			100%			
	S. Meander Pool Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	5	5			100%			
	4 Thalwag Position	1. Thalweg centering at upstream of meander bend (Run)	5	5			100%			
	4. maiweg Position	2. Thalweg centering at downstream of meander (Glide)	5	5			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6b. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 5 - 2020

Moores Fork Reach 2 (Assessed Length : 1875 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			5	136	93%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	8	8			100%			
1. Bed	2 Maandar Dool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	6	7			86%			
	S. Meander Pool Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	6	7			86%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	6	7			86%			
		2. Thalweg centering at downstream of meander (Glide)	6	7			86%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	95	97%	2	40	99%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			1	30	99%	0	0	99%
				Totals	5	125	97%	2	40	98%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	14	16			88%			
3. Engineered Structures	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	14	16			88%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	9			89%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 6c. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 5 - 2020

Moores Fork Reach 3 (Assessed Length : 2885 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			6	178	94%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	13	13			100%			
1. Bed	2 Maandar Bool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	16	16			100%			
	5. Meander Poor Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	16	16			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	16	16			100%			
		2. Thalweg centering at downstream of meander (Glide)	16	16			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	175	97%	0	0	97%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
		-	-	Totals	4	175	97%	0	0	97%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	24	27			89%			
3. Engineered Structures	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	24	27			89%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	17	18			94%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth . Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	2	3			67%			

Table 6d. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 5 - 2020

Silage Reach 1 (Assessed Length : 900 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	Run units)	2. Degradation - Evidence of downcutting	-		0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	2 Maandan Daal Candibian	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	12	12			100%			
	S. Meander Poor Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	12	12			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	12	12			100%			
		2. Thalweg centering at downstream of meander (Glide)	12	12			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	60	97%	0	0	97%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
		-		Totals	3	60	97%	0	0	97%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	8			75%			
3. Engineered Structures	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	8			75%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	1	1			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6e. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 5 - 2020

Silage Reach 2 (Assessed Length : 2448 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			6	178	93%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	14	15			93%			
1. Bed	2 Maandar Daal Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	13	16			81%			
	3. Meander Pool Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	13	16			81%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	13	16			81%			
		2. Thalweg centering at downstream of meander (Glide)	13	16			81%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			13	240	95%	1	15	95%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	13	240	95%	1	15	95%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	16			75%			
3. Engineered Structures	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	16			75%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	16			75%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	3	4			75%			

Table 6f. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709 Monitoring Year 5 - 2020

Cow Trib 1 (Assessed Length : 167 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	2 Maandas Daal Candisian	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	2	2			100%			
	3. Meander Pool Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	2	2			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
		2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	13			92%			
3. Engineered Structures	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	13			92%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	13			92%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			
Table 6g. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 5 - 2020

Cow Trib 2 (Assessed Length : 767 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting	-		0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed		1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	N/A	N/A			N/A			
	3. Meander Pool Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	N/A	N/A			N/A			
	4 Thelwar Desition	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
	4. maiweg Position	2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	20	99%	0	0	99%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
		-		Totals	1	20	99%	0	0	99%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	22	24			92%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	22	24			92%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	22	24			92%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6h. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 5 - 2020

Pond Trib (Assessed Length : 243 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			1	40	84%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	2 Maandar Dool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	N/A	N/A			N/A			
	S. Meander Pool Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	N/A	N/A			N/A			
	4 Thalwag Position	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
	4. Thatweg Position	2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	7	7			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	7	7			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 6i. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 5 - 2020

Barn Trib Reach 1 (Assessed Length : 350 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	2 Maandan Daal Canditian	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	N/A	N/A			N/A			
	S. Meander Poor Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	N/A	N/A			N/A			
	4 Thalwag Position	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
	4. maiweg Position	2. Thalweg centering at downstream of meander (Glide)	N/A	N/A			N/A			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	15	15			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	15	15			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	15	15			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

Table 6j. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project

DMS Project No. 94709

Monitoring Year 5 - 2020

Corn Trib Reach 2 (Assessed Length : 112 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	N/A	N/A			N/A			
1. Bed	2 Maandar Dool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	1	1			100%			
	S. Meander Pool Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	1	1			100%			
	4 Thalwag Position	1. Thalweg centering at upstream of meander bend (Run)	1	1			100%			
	4. maiweg rosition	2. Thalweg centering at downstream of meander (Glide)	1	1			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 7. Visual Stream Morphology Stability Assessment Table

Moores Fork Stream Mitigation Project DMS Project No. 94709

Monitoring Year 5 - 2020

Planted Acreage	15.4					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Cross Hatch Yellow	4	0.05	0.3%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	N/A	0	0.00	0.0%
			Total	4	0.05	0.3%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
			Cumulative Total	4	0.05	0.3%

Easement Acreage

140

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	Cross Hatch (Color varies by species)	48	2.7	1.9%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	None	N/A	0	0.00	0.0%

Stream Photographs

PP1 – Moores Reach 1, looking upstream (06/18/2020)

PP2 – Moores Reach 1, looking downstream (06/18/2020)

PP13 – Moores Reach 2, looking downstream (06/18/2020)

PP14 – Moores Reach 2, looking downstream (06/18/2020)

PP15 – Moores Reach 2, looking downstream (06/18/2020)

PP16 – Moores Reach 2, looking upstream (06/18/2020)

PP19 – Moores Reach 3, looking downstream (06/18/2020)

PP20 – Moores Reach 3, looking downstream (06/18/2020)

PP21 – Moores Reach 3, looking downstream (06/18/2020)

PP22 – Moores Reach 3, looking downstream (06/18/2020)

PP31 – Moores Reach 3, looking downstream (06/18/2020)

PP32 – Moores Reach 3, looking downstream (06/18/2020)

PP33 – Moores Reach 3, looking downstream (06/18/2020)

PP33a – Moores Reach 3, looking upstream (06/18/2020)

PP63 – Barn Reach 1, looking downstream (06/18/2020)

PP64 – Barn Reach 2, looking downstream (06/18/2020)

Vegetation Photographs

Vegetation Plot 12 – (8/11/2020)

APPENDIX C. Vegetation Plot Data

Table 8. Vegetation Plot Criteria Attainment

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Plot	MY4 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	
5	Y	
6	Y	100%
7	Y	100%
8	Y	
9	Y	
10	Y	
11	Y	
12	Y]

Table 9. CVS Vegetation Plot Metadata

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Database Name	cvs-eep-entrytool-v2.5.0 Moores MY5.mdb
Database Location	L:\Active Projects\005-02153 Moores Monitoring\Monitoring Year 5 (2020)\Vegetation Assessment
Computer Name	MIMI-PC
File Size	53542912
DESCRIPTION OF WORKSHEETS II	N THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	94709
Project Name	Moores Fork Stream Mitigation
Description	
River Basin	
Length(ft)	
Stream-to-edge Width (ft)	
Area (sq m)	
Required Plots (calculated)	
Sampled Plots	12
Required Plots (calculated)	12
Sampled Plots	12

Table 10. Planted and Total Stem Counts

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

														Cur	rent Plo	ot Data	(MY5 2	020)											
			947	709-01-0	0001	947	/09-01-	0002	947	709-01-	0003	947	09-01-0	0004	947	09-01-0	0005	947	09-01-0	0006	947	09-01-0	0007	947	709-01-0	8000	947	09-01-0	0009
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	т
Acer rubrum	Red Maple	Tree																											
Betula nigra	River Birch, Red Birch	Tree										1	1	1			3			1								l'	
Cercis canadensis	Redbud	Shrub Tree							1	1	1													1	1	3			
Cornus florida	Flowering dogwood	Tree																											
Diospyros virginiana	American Persimmon	Tree	3	3	3	1	1	1										1	1	1							1	1	2
Fraxinus pennsylvanica	Green Ash, Red Ash	Tree										8	8	8	2	2	2	1	1	1	4	4	5						
Liriodendron tulipifera	Tulip Poplar	Tree							3	3	3							1	1	1				1	1	1			2
Nyssa sylvatica	Black Gum	Tree																2	2	2	2	2	2	2	2	2	1	1	1
Platanus occidentalis	Sycamore	Tree							1	1	1	4	4	4	9	9	9	2	2	2	7	7	7						
Prunus serotina	Black Cherry	Tree																								2			
Pyrus calleryana	Bradford Pear	Tree																											
Quercus lyrata	Overcup Oak	Tree	6	6	6	4	4	4				2	2	2				3	3	3				4	4	4	6	6	6
Quercus montana	Rock Chestnut Oak	Tree				1	1	1	1	1	1							1	1	1							1	1	1
Quercus nigra	Water Oak	Tree	3	3	3	1	1	1				1	1	1	1	1	1							1	1	1	6	6	6
Quercus phellos	Willow Oak	Tree										1	1	1	2	2	2										1	1	1
Quercus rubra	Northern Red Oak	Tree							1	1	1																		1
Rhus copallinum	Winged Sumac	Shrub Tree																								1			
Rhus glabra	Smooth Sumac	Shrub Tree																											
		Stem count	12	12	12	7	7	7	7	7	7	17	17	17	14	14	17	11	11	12	13	13	14	9	9	14	16	16	20
		size (ares)		1			1			1			1			1			1			1			1			1	
		size (ACRES)		0.025 0.025						0.025			0.025			0.025			0.025			0.025			0.025			0.025	
		Species count	3	3	3	4	4	4	5	5	5	6	6	6	4	4	5	7	7	8	3	3	3	5	5	7	6	6	8
		Stems per ACRE	486	486	486	283	283	283	283	283	283	688	688	688	567	567	688	445	445	486	526	526	567	364	364	567	647	647	809

	Current Plot Data (MY5 2020) 94709-01-0010 94709-01-0011 94709-01-																		Annual S	Stem Co	ounts 8	k Mean	s						
			947	09-01-0	0010	947	09-01-0	0011	947	09-01-0	012	N	IY5 (202	20)	M	Y4 (201	.9)	M	Y3 (201	8)	м	Y2 (201	.7)	N	IY1 (201	.6)	M	YO (201	.6)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree			140			4						144			10			20			7						
Betula nigra	River Birch, Red Birch	Tree										1	1	5	1	1	3			1	1	1	3			2			
Cercis canadensis	Redbud	Shrub Tree										2	2	4			1			1									
Cornus florida	Flowering dogwood	Tree			2									2															
Diospyros virginiana	American Persimmon	Tree	4	4	4	1	1	1	7	7	7	18	18	19	17	17	18	17	17	21	16	16	17	14	14	14	14	14	14
Fraxinus pennsylvanica	Green Ash, Red Ash	Tree							2	2	2	17	17	18	15	15	15	15	15	17	15	15	16	13	13	13	14	14	14
Liriodendron tulipifera	Tulip Poplar	Tree			48							5	5	55	4	4	41	4	4	48	4	4	70	4	4	8	4	4	4
Nyssa sylvatica	Black Gum	Tree	4	4	4	5	5	5				16	16	16	16	16	16	16	16	16	17	17	17	20	20	20	19	19	19
Platanus occidentalis	Sycamore	Tree							1	1	1	24	24	24	24	24	24	23	23	23	24	24	24	25	25	26	26	26	26
Prunus serotina	Black Cherry	Tree												2															
Pyrus calleryana	Bradford Pear	Tree															2												
Quercus lyrata	Overcup Oak	Tree				3	3	3	1	1	1	29	29	29	29	29	29	28	28	28	30	30	30	28	28	28	29	29	29
Quercus montana	Rock Chestnut Oak	Tree				5	5	5				9	9	9	11	11	11	14	14	14	14	14	14	21	21	21	22	22	22
Quercus nigra	Water Oak	Tree	3	3	3							16	16	16	15	15	15	15	15	15	15	15	17	14	14	14	14	14	14
Quercus phellos	Willow Oak	Tree										4	4	4	4	4	4	4	4	4	4	4	4	7	7	7	7	7	7
Quercus rubra	Northern Red Oak	Tree										1	1	2															
Rhus copallinum	Winged Sumac	Shrub Tree												1															
Rhus glabra	Smooth Sumac	Shrub Tree															2			5			2			1			
		Stem count	11	11	201	14	14	18	11	11	11	142	142	350	136	136	191	136	136	213	140	140	221	146	146	154	149	149	149
		size (ares)		1			1			1			12			12			12			12			12			12	
		size (ACRES)		0.025			0.025			0.025			0.297			0.297			0.297			0.297			0.297			0.297	
		Species count	3	3	6	4	4	5	4	4	4	12	12	16	10	10	14	9	9	13	10	10	12	9	9	11	9	9	9
		Stems per ACRE	445	445	8134	567	567	728	445	445	445	479	479	1180	459	459	644	459	459	718	472	472	745	492	492	519	502	502	502

PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes

T: Total stems

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total

APPENDIX D. Morphological Summary Data and Plots

Table 11a. Baseline Stream Data SummaryMoores Fork Stream Mitigation ProjectDMS Project No.94709Monitoring Year 5 - 2020

Moores Reach 1, Reach 2, & Reach 3; Silage Reach 1 & Reach 2

WOOTES REACH 1, REACH 2, & REACH 5; Shage Reach 1		2																									
				PF	RE-RESTORAT		ON			REFERENCE	REACH DATA				DES	SIGN							AS-BUILT	/BASELINE			
Parameter	Gage	Moores Forl 1/2	k Reaches 2	Moores Fo	ork Reach 3	Silage I	Reach 1	Silage Ro	each 2	Mill B	Branch	Moores Fo	ork Reaches L/2	Moores F	ork Reach 3	Silage	Reach 1	Silage I	Reach 2	Moores Fo	ork Reaches	Moores Fo	ork Reach 3	Silage	Reach 1	Silage	Reach 2
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle		· · · · ·			•		•				•				•		•				•						•
Bankfull Width (ft)		27.3	30.6	24.9	34.2	6.7	6.9	18.	2	27.2	33.6	3	6.5		37.0	8	8.8	12	2.5	31.8	33.2	30.2	52.2	4	.2	10.6	14.6
Eloodprone Width (ft)		109.0	137.7	104.0	125.0	11	16.0	100	.0	72.1	72.5	1	145		124		19	2	8	1	45	1	24	9	.4	23	30
Bankfull Mean Depth		1.7	2.6	2.3	2.9	0.8	1.2	1.7	7	1.9	2.2		2.2		2.3	(0.6	1.	00	2.1	2.2	1.9	2.6	0	.7	0.6	0.8
Bankfull Max Depth		3.0	3.4	4	1.0	1.2	1.7	2.3	3	2.4	2.7		3.5		3.6	(0.8	1.	50	3.3	3.5	3.3	4.1	1	2	1.3	1.5
Bankfull Cross-sectional Area (ft ²)	N/A	46.9	78.2	73.3	77.6	5.6	8.4	31.	6	50.8	72.4	8	2.1	1	35.3	5	5.1	13	3.1	67.2	74.1	72.5	101.1	2	8	6.9	9.3
Width/Depth Ratio		12.0	15.9	8.4	15.1	5.7	8.0	10.	5	14.5	15.6	1	.6.2	:	16.0	1	.5.1	11	.9	14.9	15	12.5	26.9	6	.4	16.2	22.7
Entrenchment Ratio		4.0	4.5	3.7	4.2	1.6	2.3	5.5	5	2	.7		5.0		4.0	2	2.2	2	.2	4.4	4.6	2.5	4.1	4	5	1.3	2.6
Bank Height Ratio		1.2	1.4	1.2	1.9	1.0	1.6	3.1	1	1.0	1.1	1	1.0		1.0	1	1.0	1	.5	:	1.0	1	.0	1	0	1	.0
D50 (mm)		29)	3	30		4	23	}	2	20		29		30		4	2	3	11	25	13	28	1	.6	6	14
Riffle Length (ft)			.	-								50	70	10	195			16	63	32	178	26.0	199.0	-		13.12	55.95
Riffle Slope (ft/ft)						-						0.0059	0.0180	0.0038	0.02			0.0492	0.0514	0.0045	0.0158	0.0027	0.0180	-		0.0017	0.0554
Pool Length (ft)	N/A			-		-						42	140	40	112			15	35	63	170	81.0	139.0	-		10	19
Pool Max Depth (ft)				-		-			-			5	5.0		5.5					3.0	6.0	4.3	8.5	1	2	1.4	2.4
Pool Spacing (ft)						-			-			130	270	78	334	20	23	15	75	118	295	106	325	13.3	171.5	21	79
Pattern		•						•		- -														• •			
Channel Beltwidth (ft)		52	161	43	208					8	36	55	165	53	267			-		7	84	8	59	7	36	8	59
Radius of Curvature (ft)		65.8	102.7	41	94	-				19.6	25.8	53	124	58	74			-	-	25	58	13	24	9	25	13	24
Rc:Bankfull Width (ft/ft)	N/A	2.4	3.4	1.7	2.8	-				0.7	0.9	2.0	6.0	1.7	4.0			-		0.8	1.8	0.4	0.8	2.1	6.0	1.2	2.3
Meander Length (ft)		N//	A	N	I/A	-			-	N	/A	N	N/A		N/A			-		123	210	63	158	61	100	63	158
Meander Width Ratio		1.9	5.3	1.7	6.1	-				3	.2	1.9	5.7	1.7	8.6			-	-	3.9	6.6	2.1	5.2	14.5	23.8	5.9	14.9
Substrate, Bed and Transport Parameters																											
Ri%/Ru%/P%/G%/S%						1																			T		
SC%/Sa%/G%/C%/B%/Be%																									/ · · · · ·		
d50/d84/d95	N/A	28/67/89 and	d 29/43/56			-			-	40/89	9/133							-	-	25/58/90 a	nd 11/38/110	8; 28/62/150	; 13/28/51; 2	16/3	5/61	9.8/37/64	and 6/31/72
Max part size (mm) mobilized at bankfull																									/ · · · · · · · · · · · · · · · · · · ·		
Stream Power (Capacity) W/m ²																									, i i i i i i i i i i i i i i i i i i i		
Additional Reach Parameters																											
Drainage Area (SM)		1.9	Э	2	.39	0.0	070	0.2	4		5	1	.90		2.34	0.	.070	0.	24	1	90	2.	34	0.0	370	0.	24
Watershed Impervious Cover Estimate (%)		<5%	%	<	5%	<"	5%	<5%	%			<	:5%		<5%	<	:5%	<	5%	<	:5%	<5	5%	<	5%	<	5%
Rosgen Classification		C4	ļ į	(C4	G4	/B4	E4	ļ	C	24		C4		C4		B4	E	4		C4	C	4	E	34	E	4
Bankfull Velocity (fps)		4.1	5.3	4.6	5.2	5.4	6.6	6.3	3	5.0	5.5	5	5.0		4.9	4	4.5	4	.5	4.4	4.6	4.2	5.1	5	.0	4.5	5.1
Bankfull Discharge (cfs)		193.9	411.4	380.1	358.4	30.2	55.1	197	.5	N,	/A	250	0-260		260		24	6	0	297.6	340.8	348.4	468.7	13	3.8	31.2	44.3
Q-USGS NC HR1 (2-yr)	N/A	237-2	278	2	78	2	29	63	3	38	85	237	7-278		278		29	6	3	23	7-278	2	78	2	9	e	53
Valley Length (ft)		222	27	22	234	10	079	120	00	47	730	2	227	2	234	1	079	12	00	2	227	22	.34	10	179	12	200
Channel Thalweg Length (ft)		239	3	28	847	11	198	144	1	32	27	2	578	2	825	1	198	14	41	2,	628	2,8	356	1,:	198	1,4	441
Sinuosity		1.0	7	1	.27	1.	.11	1.2	0	1.	26	1	16	:	1.26	1	11	1.	20		1.2	1	.3	1.	11	1.	20
Water Surface Slope (ft/ft) ²		0.00	77	0.0	067	0.0	357	0.02	94	0.0	101	0.0	0076	0.	0064	0.0	0357	0.0	294	0.00	05541	0.00	5511	0.0	389	0.0	2758
Bankfull Slope (ft/ft)						-			-							· ·		-	-	0.00	05265	0.00	6112	0.0	404	0.0	2740

(---): Data was not provided

N/A: Not Applicable

Table 11b. Baseline Stream Data Summary

Moores Fork Stream Mitigation Project DMS Project No.94709 Monitoring Year 5 - 2020

Barn Trib, Corn Trib, Pond Trib

<table-container> norm <!--</th--><th></th><th></th><th></th><th>PRE-RESTORATION CONDITIO</th><th>N</th><th>REFERENCE</th><th>REACH DATA</th><th></th><th>DESIGN</th><th></th><th></th><th>AS-BUILT/BASELINE</th><th></th><th></th></table-container>				PRE-RESTORATION CONDITIO	N	REFERENCE	REACH DATA		DESIGN			AS-BUILT/BASELINE		
channe decommentmainmai	Parameter	Gage	Barn	Corn	Pond	Barn Trib Pres Rch	Corn Trib Pres Rch	Barn (Reach 1)	Corn	Pond	Barn (Reach 1)	Corn (Reach 2)	Pond	d
Weight we			Min Ma	k Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min	Max
Index Name Index Name </td <td>Dimension and Substrate - Riffle</td> <td></td>	Dimension and Substrate - Riffle													
Absolution (Amplite)And	Bankfull Width (ft)		1.6	4.6	16.3	7.0	4.1	6.0	6.6	8.0				
Angle And Angle An	Floodprone Width (ft)		4.0	7.8	50.0	9.9	13.7	19	20	25				
endBank0.77.21.10.50.80.80.10.80.80.10.8 <th< td=""><td>Bankfull Mean Depth</td><td></td><td>0.6</td><td>0.5</td><td>1.5</td><td>0.7</td><td>0.4</td><td>0.5</td><td>0.4</td><td>0.7</td><td></td><td></td><td></td><td></td></th<>	Bankfull Mean Depth		0.6	0.5	1.5	0.7	0.4	0.5	0.4	0.7				
Bachd (1900)N/A (1900)0.92.42.42.40.41.50.22.30.30.30.5 </td <td>Bankfull Max Depth</td> <td></td> <td>0.8</td> <td>0.7</td> <td>2.6</td> <td>1.1</td> <td>0.5</td> <td>0.8</td> <td>0.6</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td>	Bankfull Max Depth		0.8	0.7	2.6	1.1	0.5	0.8	0.6	1.0				
And weinfingent seriesAs a b a b a b a b a b a b a b a b a b a	Bankfull Cross-sectional Area (ft ²)	N/A	0.9	2.4	24.4	4.6	1.5	3.2	2.9	5.5				
Image: black	Width/Depth Ratio		2.9	8.9	10.9	10.6	11.2	11.3	15.1	11.6				
Image: basis and lege transImage: basis	Entrenchment Ratio		2.5	1.7	3.1	1.4	3.3	3.2	3.0	3.1				
bit bit <td>Bank Height Ratio</td> <td></td> <td>7.6</td> <td>3.8</td> <td>1.1</td> <td>1.6</td> <td>1.7</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td>	Bank Height Ratio		7.6	3.8	1.1	1.6	1.7	1.0	1.0	1.0				
Affic bengh (n) NA Image: Ima	D50 (mm)					46	46							
Infficiently Infficiently Infficiently														
network main 	Riffle Length (ft)									5 31		12.0	8.4	27.3
Mode DecisionMode	Riffle Slope (ft/ft)									0.02 0.0538		0.0498	0.0136	0.0241
Mean Performant	Pool Length (ft)	N/A						8 13		10 30		17.5 32.9	27.8	37.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pool Max Depth (ft)	,										2.6 3.6	0.7	1.4
RedR	Pool Spacing (ft)							8 10		15 54	6.11 77.7	9 56	22	43
Parton	Pool Volume (ft ³)													
Chane Betwidth (f)	Pattern							-						
ABR	Channel Beltwidth (ft)										13 26	20 22	24	24
$ \begin{array}{ c c c c c c } \hline Reland (Infying ($	Radius of Curvature (ft)										12 30	12 29	15	21
Meander (englin (f)) ··· ··· ··· ···	Rc:Bankfull Width (ft/ft)	N/A												
Meander Width Raio in-	Meander Length (ft)										71 85	49 61	66	78
Substrate get and Transvets up determine get and the substrate get and the	Meander Width Ratio													
Bits/Ruk/PM/SVS SV/SVS/SVS/CVS/SVS SV/SVS/SVS/SVS/SVS/SVS SVS/SVS/SVS/SVS/SVS/SVS/SVS/SVS/SVS/SVS	Substrate, Bed and Transport Parameters					•			•			•		
SC%/Sx%/Sk%/Sk%/Sk%/Sk%/Sk%/Sk%/Sk%/Sk%/Sk%/Sk	Ri%/Ru%/P%/G%/S%		-											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SC%/Sa%/G%/C%/B%/Be%													
	d50/d84/d95	N/A												
Stream Power (Capcity) W/m ¹ O O O O	Max part size (mm) mobilized at bankfull													
Additional Reach Parameters	Stream Power (Capacity) W/m ²													
Drainage Area (SM) O.01 O.01 O.01 O.01 O.01 O.01 O.05 O.040 Watershed Impervious Cover Estimate (%) $< S \%$ <	Additional Reach Parameters													
Matershed Impervious Cover Estimate (%) $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$	Drainage Area (SM)		0.01	0.05	0.04	0.08	0.05	0.01	0.05	0.040	0.01	0.05	0.04	0
Rosgen Classification Rosgen Classification G4 G4 C4b E4b B4 C4b E4b E4b </td <td>Watershed Impervious Cover Estimate (%)</td> <td></td> <td><5%</td> <td>6</td>	Watershed Impervious Cover Estimate (%)		<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%	<5%	6
$ \frac{1}{1} + 1$	Rosgen Classification		G4	G4	C4b (trampled)	B4	E4b	E4b	B4	C4b	E4b	B4	C4b)
	Bankfull Velocity (fps)		2.70	5.01	7.4	3.84	2.7	3.31	4.7	3.93				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bankfull Discharge (cfs)		2.5	12.0	181.4	1/./	4.0	11		19				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q-USGS NC HR1 (2-yr)	N/A	8		20			8		20			10	
$\frac{1}{1} \frac{1}{1} \frac{1}$	Q-Mannings		11		19			11		19	11		19	,
$\frac{1}{1} \frac{1}{1} \frac{1}$	Valley Length (ft)		622	84	18/	622		330	84	18/	330	84	18/	
$\frac{1.15}{W_{ater}Surface}Slope (ffr)^2} \frac{0.40}{0.026} \frac{1.15}{0.026} \frac{1.04}{0.029} \frac{0.021}{0.021} \frac{0.0243}{0.0243} \frac{0.026}{0.0567} \frac{0.0176}{0.0176} \frac{0.0478}{0.0478} \frac{0.1124}{0.0425} \frac{0.0475}{0.0118} \frac{0.0118}{0.0118} \frac{0.0118}{0.0018} \frac{0.0118}{0.0018} \frac{0.0011}{0.0018} \frac$	Channel Thalweg Length (ft)		250	9/	194	0.14	28	350	9/	243	350	112	243	•
	Sinuosity		0.40	0.0567	0.029	0.14	0.0242	1.00	1.15	0.0176	1.00	1.3	1.3	19
Write Subject (M)	Water Surface Slope (ft/ft) Bankfull Slope (ft/ft)					0.0211	0.0243	0.0200	0.0307	0.0170	0.0476 0.1124	0.0423	0.011	29

(---): Data was not provided

N/A: Not Applicable

 Table 12a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)

 Moores Fork Stream Mitigation Project

 DMS Project No.94709

Monitoring Year 5 - 2020

Moores Fork

	Cross-Section M1 (Riffle)								Cross-Section M2 (Riffle)									Cross-Section M3 (Pool)								
Dimension and Substrate	Base	MY1	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base	MY1	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7		
bankfull elevation (ft)	1150.4	1150.4	1150.4	1150.5		1150.7			1148.7	1148.7	1148.7	1149.1		1149.3			1148.4	1148.4	1148.4	1148.4		1149.0				
low bank elevation (ft)	1150.4	1150.5	1150.4	1150.3		1150.4			1148.7	1148.7	1148.6	1148.8		1149.4			1148.4	1148.3	1148.4	1148.4		1149.0				
Bankfull Width (ft)	33.2	34.2	34.1	36.0		32.4			31.8	32.5	32.5	38.5		33.8			39.1	39.3	38.9	38.0		40.4				
Floodprone Width (ft)	145.0	145.0	145.0	145.0		145.0			145.0	145.0	145.0	145.0		145.0												
Bankfull Mean Depth (ft)	2.2	2.2	2.1	2.1		2.0			2.1	2.0	1.9	1.7		2.1			2.3	2.3	2.3	2.2		2.4				
Bankfull Max Depth (ft)	3.3	3.2	3.4	3.5		3.3			3.5	3.4	3.4	3.7		4.0			5.2	5.1	5.2	5.1		5.5				
Bankfull Cross-Sectional Area (ft ²)	74.1	74.3	71.9	74.1		65.3			67.2	65.6	62.0	67.2		70.5			91.8	90.1	87.8	81.8		95.5				
Bankfull Width/Depth Ratio	14.9	15.7	16.1	17.5		16.0			15.0	16.1	17.0	22.1		16.2			16.6	17.2	17.2	17.6		17.1				
Bankfull Entrenchment Ratio	4.4	4.2	4.3	4.0		4.5			4.6	4.5	4.5	3.8		4.3												
Bankfull Bank Height Ratio	1.0	1.0	1.0	<1.0		<1.0			1.0	1.0	1.0	<1.0		1.0												
			Cros	on M4 (Riffle)				Cross-Section M5 (Riffle)								Cross-Section M6 (Pool)										
Dimension and Substrate	Base	MY1	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base ¹	MY1	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base ¹	MY1	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7		
bankfull elevation (ft)	1142.3	1142.3	1142.3	1142.5		1142.5			1139.5	1139.5	1139.5	1139.5		1139.5			1138.6	1138.6	1138.6	1138.7		1138.3				
low bank elevation (ft)	1142.3	1141.6	1141.6	1142.2		1142.3			1139.5	1139.4	1139.7	1139.7		1139.9			1138.6	1138.5	1138.5	1138.7		1138.3				
Bankfull Width (ft)	52.2	51.6	52.3	52.3		52.4			32.0	31.6	32.6	32.7		34.7			39.3	39.1	39.3	48.1		39.9				
Floodprone Width (ft)	124.0	124.0	124.0	124.0		124.0			124.0	124.0	124.0	124.0		124.0												
Bankfull Mean Depth (ft)	1.9	1.9	1.8	1.6		1.7			2.3	2.3	2.2	2.2		2.5			2.7	2.7	2.9	2.4		2.7				
Bankfull Max Depth (ft)	3.3	3.2	3.7	3.2		4.0			3.5	3.6	3.6	3.8		4.4			5.1	5.5	5.2	5.2		5.8				
Bankfull Cross-Sectional Area (ft ²)	101.1	97.4	95.8	83.8		89.9			73.0	72.4	72.8	73.0		84.7			106.1	106.2	115.6	116.7		107.7				
Bankfull Width/Depth Ratio	26.9	27.3	28.6	32.7	1	30.5			14.0	13.8	14.6	14.6		14.1			14.5	14.4	13.3	19.8		14.8	1			
Bankfull Entrenchment Ratio	2.4	2.4	2.4	2.4		2.4			3.9	3.9	4.1	3.8		3.6												
Bankfull Bank Height Ratio	1.0	<1.0	<1.0	<1.0		<1.0			1.0	1.0	1.1	1.0		1.1												
			Cro	ss-Sectio	on M7 (I	Run)					Cros	s-Sectio	n M8 (R	iffle)					Cro	ss-Sectio	on M9 (F	Pool)				
Dimension and Substrate	Base ¹	MY1	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base	MY1 ¹	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2 ¹	MY3 ²	MY4 ³	MY5	MY6	MY7		
bankfull elevation (ft)	1134.9	1134.9	1134.9	1135.0		1135.1			1132.4	1132.4	1132.4	1132.4		1132.5			1132.1	1132.1	1132.1	1132.1		1132.2				
low bank elevation (ft)	1134.9	1134.9	1135.0	1134.8		1134.9			1132.4	1132.3	1132.3	1132.2		1132.6			1132.1	1132.1	1132.1	1132.1		1132.2				
Bankfull Width (ft)	49.5	49.2	49.6	51.0		48.5			34.6	34.0	33.5	36.5		35.9			52.0	53.7	54.3	57.9		55.0				
Floodprone Width (ft)	124.0	124.0	124.0	124.0		124.0			124.0	124.0	124.0	124.0		124.0												
Bankfull Mean Depth (ft)	2.4	2.4	2.4	2.3		2.2			2.6	2.7	2.7	2.5		2.7			2.8	2.8	2.7	2.5		2.4				
Bankfull Max Depth (ft)	3.5	3.5	3.8	4.0		3.7			4.1	4.3	4.2	4.3		4.9			6.3	6.3	6.5	6.2		6.6				
Bankfull Cross-Sectional Area (ft ²)	118.1	117.0	117.7	118.1		105.4			91.5	91.5	89.2	91.5		96.6			146.3	149.5	146.1	146.1		133.3				
Bankfull Width/Depth Ratio	20.7	20.7	20.9	22.0		22.3			13.1	12.6	12.6	14.6		13.3			18.5	19.3	20.1	23.0		22.7				
Bankfull Entrenchment Ratio	2.5	2.5	2.5	2.4		2.6			3.6	3.6	3.7	3.4		3.5												
Bankfull Bank Height Ratio	1.0	1.0	1.0	<1.0		<1.0			1.0	1.0	1.0	1.0		1.0												

¹Adjustment in survey points included in bankfull calculations resulting in change to previous monitoring year bankfull dimensions.

²Prior to MY3, bankfull dimensions were calculated using a fixed bankfull elevation. For MY3-MY7, Bank Height Ratio is calculated based on the As-built (Base) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the low bank elevation.

³MY4 and MY6 are reduced monitoring years. No geomorphic data collected.

Table 12b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Moores Fork Stream Mitigation Project DMS Project No.94709

Monitoring Year 5 - 2020

Silage Tributary

	Cross-Section ST1 (Riffle)							Cross-Section ST2 (Pool)								Cross-Section ST3 (Riffle)								
Dimension and Substrate	Base	MY1	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base	MY1 ¹	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2 ¹	MY3 ²	MY4 ³	MY5	MY6	MY7
bankfull elevation (ft)	1234.6	1234.6	1234.6	1234.1		1234.1			1233.4	1233.4	1233.4	1233.5		1233.6			1193.0	1193.0	1193.0	1192.8		1192.6		
low bank elevation (ft)	1234.6	1234.6	1234.6	1234.4		1234.6			1233.4	1233.4	1233.5	1233.5		1233.6			1193.0	1192.9	1192.7	1192.7		1192.9		
Bankfull Width (ft)	4.2	4.0	4.5	4.2		5.4			5.1	4.5	5.3	5.1		5.7			9.6	10.2	10.2	6.5		7.9		
Floodprone Width (ft)	9.4	9.2	9.6	10.7		9.7											15.0	15.0	22.1	20.0		21.0		
Bankfull Mean Depth (ft)	0.7	0.6	0.9	0.7		0.9			0.6	0.6	0.6	0.8		1.0			0.5	0.4	0.6	0.7		0.8		
Bankfull Max Depth (ft)	1.2	1.1	1.5	0.9		1.3			1.2	1.2	1.1	1.2		1.7			0.9	0.9	1.5	1.3		1.3		
Bankfull Cross-Sectional Area (ft ²)	2.8	2.3	4.1	2.8		5.1			3.2	2.8	3.0	4.1		5.6			4.9	4.2	6.5	4.8		6.6		
Bankfull Width/Depth Ratio	6.4	6.7	4.8	6.2		5.8			8.0	7.2	9.2	6.4		5.8			18.7	24.9	15.9	8.9		9.4		
Bankfull Entrenchment Ratio	2.2	2.3	2.2	2.6		1.8											1.6	1.5	2.2	3.1		2.7		
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.3		1.6											1.0	<1.0	<1.0	1.0		1.2		
			Cros	ss-Sectio	n ST4 (Pool)				Cross-Sectio				on ST5 (Pool)						Cros	s-Sectio	h ST6 (Riffle)			
Dimension and Substrate	Base ¹	MY1 ¹	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7	Base ¹	MY1 ¹	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7
bankfull elevation (ft)	1193.1	1193.1	1193.1	1193.1		1192.5			1185.1	1185.1	1185.1	1184.7		1185.0			1175.4	1175.4	1175.4	1175.4		1174.9		
low bank elevation (ft)	1193.1	1192.9	1192.9	1193.1		1192.5			1185.1	1184.9	1185.0	1184.7		1185.0			1175.4	1175.3	1175.3	1175.4		1175.7		
Bankfull Width (ft)	13.9	14.9	14.7	16.5		13.9			7.8	8.7	8.4	8.2		10.1			9.6	8.4	8.7	8.3		8.3		
Floodprone Width (ft)											-						28.0	28.0	28.0	28.0		28.0		
Bankfull Mean Depth (ft)	1.1	1.3	1.1	1.2		0.8			1.0	0.9	1.0	0.9		1.0			0.7	0.7	0.8	0.8		1.6		
Bankfull Max Depth (ft)	2.4	2.7	2.3	2.5		1.7			1.4	1.5	1.6	1.3		1.4			1.3	1.5	1.5	1.5		2.2		
Bankfull Cross-Sectional Area (ft ²)	15.5	19.4	16.0	19.1		10.8			7.9	8.1	8.7	7.1		9.7			6.8	6.1	7.3	7.0		13.2		
Bankfull Width/Depth Ratio	12.5	11.4	13.4	14.3		17.9			7.7	9.4	8.1	9.4		10.5			13.5	11.6	10.4	9.9		5.2		
Bankfull Entrenchment Ratio																	2.9	3.3	3.2	3.4		3.4		
Bankfull Bank Height Ratio																	1.0	<1.0	<1.0	1.0		1.6		
		1	Cros	s-Sectio	n ST7 (R	tiffle)																		
Dimension and Substrate	Base ¹	MY1 ¹	MY2	MY3 ²	MY4 ³	MY5	MY6	MY7																
bankfull elevation (ft)	1164.7	1164.7	1164.7	1164.7		1164.7																		
low bank elevation (ft)	1164.7	1164.6	1164.6	1164.6		1165.0																		
Bankfull Width (ft)	10.3	10.5	10.8	8.7		10.5																		
Floodprone Width (ft)	29.6	31.8	33.6	31.0		34.0																		
Bankfull Mean Depth (ft)	0.9	0.9	0.9	1.0		1.1																		
Bankfull Max Depth (ft)	1.5	1.6	1.8	1.6		1.9																		
Bankfull Cross-Sectional Area (ft ²)	8.8	9.3	9.6	8.3		12.0																		
Bankfull Width/Depth Ratio	12.0	12.0	12.1	9.1		9.2																		
Bankfull Entrenchment Ratio	2.9	3.0	3.1	3.6		3.2																		
Bankfull Bank Height Ratio	1.0	<1.0	1.0	<1.0		1.2																		

¹Adjustment in survey points included in bankfull calculations resulting in change to previous monitoring year bankfull dimensions.

²Prior to MY3, bankfull dimensions were calculated using a fixed bankfull elevation. For MY3-MY7, Bank Height Ratio is calculated based on the As-built (Base) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the low bank elevation.

³MY4 and MY6 are reduced monitoring years. No geomorphic data collected.

Cross-Section Plots Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M1- Moores Fork

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

Cross-Section Plots Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M2- Moores Fork

Field Crew: Kee Mapping & Surveying

Cross-Section Plots Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M3- Moores Fork

Field Crew: Kee Mapping & Surveying

Cross-Section Plots

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M4- Moores Fork

55.6

1.6 30.5

124.0

2.4

0.95

Survey Date: 4/2020

wetted perimeter (ft) hydraulic radius (ft)

W flood prone area (ft)

width-depth ratio

entrenchment ratio

Field Crew: Kee Mapping & Surveying

low bank height ratio

Cross-Section Plots Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M5- Moores Fork

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Apr 14, 2020 3:06:17 PM

Cross-Section Plots Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M6- Moores Fork

- 2.5
- 14.8 width-depth ratio

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Cross-Section Plots Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M7- Moores Fork

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Apr 15, 2020 8:44:3 286 Maple Grove Church

Church Road

Mount Air
Cross-Section Plots Moores Fork Stream Mitigation Project

DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M8- Moores Fork

x-section area (ft.sq.) 96.6 width (ft) 35.9 2.7 mean depth (ft) max depth (ft) 4.9 38.2 wetted perimeter (ft) 2.5 hydraulic radius (ft) 13.3 width-depth ratio 124.0 W flood prone area (ft) 3.5 entrenchment ratio 1.0 low bank height ratio Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Cross-Section Plots Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section M9- Moores Fork

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Rick Road

ount Airy

Cross-Section Plots

Cross-Section ST1- Silage Trib

- width-depth ratio
- 9.7 W flood prone area (ft)
- 1.8 entrenchment ratio
- 1.6 low bank height ratio

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Cross-Section Plots

Cross Section ST2- Silage Trib

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Apr 16, 2020 3:28:10 Pl

Mount Airy

Cross-Section Plots

Cross-Section ST3 - Silage Trib

- 9.4 width-depth ratio
- 21.0 W flood prone area (ft)
- 2.7 entrenchment ratio
- 1.2 low bank height ratio

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Cross-Section Plots

Cross-Section ST4 - Silage Trib

View Downstream

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

width (ft)

mean depth (ft)

max depth (ft) wetted perimeter (ft) hydraulic radius (ft)

width-depth ratio

13.9 0.8

1.7

14.7 0.7 17.9

Cross-Section Plots Moores Fork Stream Mitigation Project

DMS Project No. 94709 Monitoring Year 5 - 2020

Cross-Section ST5 - Silage Trib

Survey Date: 4/2020 Field Crew: Kee Mapping & Surveying

View Downstream

Cross-Section Plots

Cross-Section ST6 - Silage Trib

1.6

2.2

10.6

1.2

5.2

28.0

3.4

1.6

Survey Date: 4/2020

mean depth (ft)

max depth (ft)

hydraulic radius (ft)

entrenchment ratio

width-depth ratio

View Downstream

Cross-Section Plots

width (ft)

mean depth (ft) max depth (ft)

hydraulic radius (ft)

entrenchment ratio

width-depth ratio

10.5 1.1

1.9 11.5

1.0 9.2

34.0

3.2

1.2

Survey Date: 4/2020

Cross-Section ST7- Silage Trib

View Downstream

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Silage Trib Reach 1, Cross-Section ST1

		Diame	ter (mm)	Biffle 100	Summary	
Par	ticle Class			Kime 100-	Class	Percent
			max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
AND	Medium	0.25	0.50	1	1	1
5'	Coarse	0.5	1.0			1
	Very Coarse	1.0	2.0			1
	Very Fine	2.0	2.8			1
	Very Fine	2.8	4.0			1
	Fine	4.0	5.6			1
	Fine	5.6	8.0	4	4	5
JET	Medium	8.0	11.0	3	3	8
64A	Medium	11.0	16.0	7	7	15
	Coarse	16.0	22.6	8	8	23
	Coarse	22.6	32	13	13	36
	Very Coarse	32	45	17	17	53
	Very Coarse	45	64	15	15	68
	Small	64	90	13	13	81
alt	Small	90	128	10	10	91
COBU	Large	128	180	8	8	99
	Large	180	256	1	1	100
	Small	256	362			100
	Small	362	512			100
s s	Medium	512	1024			100
Y	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section ST1				
Channel materials (mm)				
D ₁₆ =	16.7			
D ₃₅ =	31.2			
D ₅₀ =	42.4			
D ₈₄ =	100.0			
D ₉₅ =	151.8			
D ₁₀₀ =	256.0			

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Silage Trib Reach 2, Cross-Section ST3

		Diame	ter (mm)	Biffle 100	Summary	
Par	ticle Class			Count	Class	Percent
			max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
AND	Medium	0.25	0.50			0
7	Coarse	0.5	1.0	2	2	2
	Very Coarse	1.0	2.0	1	1	3
	Very Fine	2.0	2.8			3
	Very Fine	2.8	4.0			3
	Fine	4.0	5.6	5	5	8
	Fine	5.6	8.0	4	4	12
JET	Medium	8.0	11.0	6	6	18
GRAN	Medium	11.0	16.0	7	7	25
	Coarse	16.0	22.6	5	5	30
	Coarse	22.6	32	5	5	35
	Very Coarse	32	45	16	16	51
	Very Coarse	45	64	15	15	66
	Small	64	90	10	10	76
alt	Small	90	128	13	13	89
COBU	Large	128	180	11	11	100
	Large	180	256			100
	Small	256	362			100
్లి	Small	362	512			100
	Medium	512	1024			100
×	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section ST3				
Channel materials (mm)				
D ₁₆ =	9.9			
D ₃₅ =	32.0			
D ₅₀ =	44.1			
D ₈₄ =	111.8			
D ₉₅ =	154.2			
D ₁₀₀ =	180.0			

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Silage Trib Reach 2, Cross-Section ST6

		Diame	ter (mm)	Biffle 100	Summary	
Par	Particle Class			Kime 100-	Class	Percent
			max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	3	3	3
	Very fine	0.062	0.125			3
	Fine	0.125	0.250	1	1	4
aND	Medium	0.25	0.50	1	1	5
5	Coarse	0.5	1.0			5
	Very Coarse	1.0	2.0			5
	Very Fine	2.0	2.8			5
	Very Fine	2.8	4.0			5
	Fine	4.0	5.6	1	1	6
	Fine	5.6	8.0	2	2	8
JET	Medium	8.0	11.0	2	2	10
64A	Medium	11.0	16.0	8	8	18
	Coarse	16.0	22.6	10	10	28
	Coarse	22.6	32	12	12	40
	Very Coarse	32	45	14	14	54
	Very Coarse	45	64	15	15	69
	Small	64	90	15	15	84
alt	Small	90	128	11	11	95
COBE	Large	128	180	4	4	99
	Large	180	256	1	1	100
	Small	256	362			100
	Small	362	512			100
ð	Medium	512	1024			100
v	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section ST6				
Channel materials (mm)				
D ₁₆ =	14.6			
D ₃₅ =	27.7			
D ₅₀ =	40.8			
D ₈₄ =	90.0			
D ₉₅ =	128.0			
D ₁₀₀ =	256.0			

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Silage Trib Reach 2, Cross-Section ST7

		Diameter (mm)		Biffle 100	Summary	
Par	ticle Class			Count	Class	Percent
			max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	1	1
	Very fine	0.062	0.125			1
	Fine	0.125	0.250	1	1	2
aND	Medium	0.25	0.50	1	1	3
יל '	Coarse	0.5	1.0			3
	Very Coarse	1.0	2.0	1	1	4
	Very Fine	2.0	2.8			4
	Very Fine	2.8	4.0			4
	Fine	4.0	5.6	2	2	6
	Fine	5.6	8.0	8	8	14
JET	Medium	8.0	11.0	6	6	20
64A	Medium	11.0	16.0	7	7	27
	Coarse	16.0	22.6	5	5	32
	Coarse	22.6	32	14	14	46
	Very Coarse	32	45	26	26	72
	Very Coarse	45	64	13	13	85
	Small	64	90	7	7	92
alt	Small	90	128	8	8	100
COBE	Large	128	180			100
	Large	180	256			100
	Small	256	362			100
ి	Small	362	512			100
8 ⁹	Medium	512	1024			100
Y	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section ST7			
Channel materials (mm)				
D ₁₆ =	8.9			
D ₃₅ =	24.3			
D ₅₀ =	33.7			
D ₈₄ =	62.3			
D ₉₅ =	102.7			
D ₁₀₀ =	128.0			

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

		Diame	ter (mm)	Piffle 100	Summary	
Par	Particle Class			Count	Class	Percent
			max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	1	1	1
aND	Medium	0.25	0.50	3	3	4
5	Coarse	0.5	1.0	2	2	6
	Very Coarse	1.0	2.0			6
	Very Fine	2.0	2.8			6
	Very Fine	2.8	4.0	1	1	7
	Fine	4.0	5.6			7
	Fine	5.6	8.0	2	2	9
JET	Medium	8.0	11.0	5	5	14
64A	Medium	11.0	16.0	5	5	19
	Coarse	16.0	22.6	9	9	28
	Coarse	22.6	32	12	12	40
	Very Coarse	32	45	23	23	63
	Very Coarse	45	64	17	17	80
	Small	64	90	15	15	95
alt	Small	90	128	4	4	99
COBU	Large	128	180	1	1	100
	Large	180	256			100
	Small	256	362			100
ి	Small	362	512			100
ø	Medium	512	1024			100
¥.	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M1				
Channel materials (mm)				
D ₁₆ =	12.8			
D ₃₅ =	27.7			
D ₅₀ =	37.1			
D ₈₄ =	70.1			
D ₉₅ =	90.0			
D ₁₀₀ =	180.0			

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

		Diame	ter (mm)	Piffle 100	Summary	
Par	Particle Class			Kime 100-	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	1	1	1
AND	Medium	0.25	0.50	2	2	3
5'	Coarse	0.5	1.0	1	1	4
	Very Coarse	1.0	2.0	2	2	6
	Very Fine	2.0	2.8			6
	Very Fine	2.8	4.0			6
	Fine	4.0	5.6			6
	Fine	5.6	8.0	1	1	7
JET	Medium	8.0	11.0	5	5	12
GRAN	Medium	11.0	16.0	7	7	19
	Coarse	16.0	22.6	10	10	29
	Coarse	22.6	32	4	4	33
	Very Coarse	32	45	8	8	41
	Very Coarse	45	64	16	16	57
	Small	64	90	9	9	66
alt	Small	90	128	10	10	76
COBU	Large	128	180	9	9	85
	Large	180	256	8	8	93
	Small	256	362	4	4	97
ి	Small	362	512	3	3	100
ø	Medium	512	1024			100
Y	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M2				
Channel materials (mm)				
D ₁₆ =	13.6			
D ₃₅ =	34.8			
D ₅₀ =	54.9			
D ₈₄ =	173.3			
D ₉₅ =	304.4			
D ₁₀₀ =	512.0			

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Particle Class		Diame	Diameter (mm)		Summa		
				Kime 100-	Class	Percent	
			max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
	Fine	0.125	0.250			0	
AND	Medium	0.25	0.50	1	1	1	
5	Coarse	0.5	1.0	1	1	2	
	Very Coarse	1.0	2.0			2	
	Very Fine	2.0	2.8			2	
	Very Fine	2.8	4.0			2	
	Fine	4.0	5.6			2	
	Fine	5.6	8.0	1	1	3	
. ACT	Medium	8.0	11.0	3	3	6	
GAR	Medium	11.0	16.0	6	6	12	
	Coarse	16.0	22.6	6	6	18	
	Coarse	22.6	32	6	6	24	
	Very Coarse	32	45	7	7	31	
	Very Coarse	45	64	15	15	46	
	Small	64	90	11	11	57	
alf	Small	90	128	32	32	89	
COBE	Large	128	180	4	4	93	
-	Large	180	256	3	3	96	
	Small	256	362	3	3	99	
్	Small	362	512	1	1	100	
S S	Medium	512	1024			100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cross-Section M4						
Ch	Channel materials (mm)					
D ₁₆ =	20.1					
D ₃₅ =	49.4					
D ₅₀ =	72.4					
D ₈₄ =	121.1					
D ₉₅ =	227.6					
D ₁₀₀ =	512.0					

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Particle Class		Diame	ter (mm)	Biffle 100	Summary	
				Count	Class	Percent
			max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
AND	Medium	0.25	0.50	3	3	3
5'	Coarse	0.5	1.0	1	1	4
	Very Coarse	1.0	2.0			4
	Very Fine	2.0	2.8			4
	Very Fine	2.8	4.0			4
	Fine	4.0	5.6			4
	Fine	5.6	8.0			4
JET	Medium	8.0	11.0	2	2	6
GRA .	Medium	11.0	16.0	4	4	10
	Coarse	16.0	22.6	3	3	13
	Coarse	22.6	32	11	11	24
	Very Coarse	32	45	10	10	34
	Very Coarse	45	64	16	16	50
	Small	64	90	16	16	66
alt	Small	90	128	11	11	77
COBU	Large	128	180	15	15	92
	Large	180	256	3	3	95
	Small	256	362	3	3	98
	Small	362	512	2	2	100
S S	Medium	512	1024			100
×	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M5						
Ch	Channel materials (mm)					
D ₁₆ =	24.8					
D ₃₅ =	46.0					
D ₅₀ =	64.0					
D ₈₄ =	150.1					
D ₉₅ =	256.0					
D ₁₀₀ =	512.0					

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Particle Class		Diameter (mm)		Summa		mary
				Kime 100-	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	1	1	1
AND	Medium	0.25	0.50	1	1	2
5'	Coarse	0.5	1.0	1	1	3
	Very Coarse	1.0	2.0	2	2	5
	Very Fine	2.0	2.8			5
	Very Fine	2.8	4.0	2	2	7
	Fine	4.0	5.6			7
	Fine	5.6	8.0	1	1	8
JET	Medium	8.0	11.0			8
64A	Medium	11.0	16.0	2	2	10
	Coarse	16.0	22.6	3	3	13
	Coarse	22.6	32	1	1	14
	Very Coarse	32	45	7	7	21
	Very Coarse	45	64	14	14	35
	Small	64	90	18	18	53
alt	Small	90	128	21	21	74
COBU	Large	128	180	23	23	97
-	Large	180	256	3	3	100
	Small	256	362			100
Š	Small	362	512			100
ð	Medium	512	1024			100
~	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section M7				
Ch	annel materials (mm)			
D ₁₆ =	35.3			
D ₃₅ =	64.0			
D ₅₀ =	85.0			
D ₈₄ =	148.5			
D ₉₅ =	174.7			
D ₁₀₀ =	256.0			

Moores Fork Stream Mitigation Project DMS Project No. 94709 Monitoring Year 5 - 2020

Particle Class		Diameter (mm)		Biffle 100	Summary	
				Count	Class	Percent
			max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
AND	Medium	0.25	0.50			0
5'	Coarse	0.5	1.0	1	1	1
	Very Coarse	1.0	2.0			1
	Very Fine	2.0	2.8			1
	Very Fine	2.8	4.0	1	1	2
	Fine	4.0	5.6			2
	Fine	5.6	8.0	3	3	5
JET	Medium	8.0	11.0	6	6	11
GRAN	Medium	11.0	16.0	7	7	18
	Coarse	16.0	22.6	13	13	31
	Coarse	22.6	32	11	11	42
	Very Coarse	32	45	9	9	51
	Very Coarse	45	64	18	18	69
	Small	64	90	14	14	83
alt	Small	90	128	12	12	95
COBU	Large	128	180	1	1	96
-	Large	180	256	2	2	98
	Small	256	362	1	1	99
ి	Small	362	512			99
ð	Medium	512	1024			99
v	Large/Very Large	1024	2048			99
BEDROCK	Bedrock	2048	>2048	1	1	100
			Total	100	100	100

Cross-Section M8						
Ch	Channel materials (mm)					
D ₁₆ =	14.4					
D ₃₅ =	25.6					
D ₅₀ =	43.3					
D ₈₄ =	92.7					
D ₉₅ =	128.0					
D ₁₀₀ =	>2048					

APPENDIX E. Hydrology Summary Data and Plots

Table 13. Verification of Bankfull EventsMoores Fork Stream Mitigation ProjectDMS Project No.94709Monitoring Year 5 - 2020

Reach	Monitoring Year	Date of Data Collection	Date of Occurrence	Method	Measurement (ft)
	MY1	10/25/2016	~8/4/2016	Crest Gage	1.30
	MY2	7/10/2017	~5/25/2017	Crest Gage	2.55
	MY3	4/12/2018	~3/25/2018	Crest Gage	2.73
Moores Fork Reach 2	MVA	3/13/2019	~2/24/2019	Crest Gage	2.30
	10114	6/19/2019	~6/18/2019	Debris wracklines	N/A
	MY5	2/27/2020	~1/25/2020	Debris wracklines	N/A
		9/8/2020	~9/1/2020	Debris wracklines	N/A
	MY1	10/25/2016	~8/4/2016	Crest Gage	0.75
Silage Reach 2	MY3	4/12/2018	~3/25/2018	Debris wracklines	N/A
	MY4	6/19/2019	~6/18/2019	Crest Gage/Debris wracklines	N/A
	MY5	9/8/2020	~9/1/2020	Debris wracklines	N/A

Monthly Rainfall Data

Moores Fork Stream Mitigation Project DMS Project No.94709 Monitoring Year 5 - 2020

¹ 2020 rainfall collected from NC CRONOS Station Name: MT AIRY 2 W (NCCRONOS, 2020)

² 30th and 70th percentile rainfall data collected from weather station MT AIRY 2 W, NC (NCCRONOS, 2020)

APPENDIX F. Invasive Species Treatment Logs

MEMO

Subject:	Moore's Fork Mitigation Site Maintenance Report
Date:	October 2020
From:	Ben Balke and Joe Secoges
To:	Matthew Reid and Kelly Phillips, NCDEQ

For reporting purposes, Eastern Forest Consultants produced a map delineating five management units. The units are labeled A through E on a map attached to the memo to help describe tasks performed in various areas of the property.

Tasks Preformed:

- Management Area A-
 - Management Area A was treated on Friday May 29, 2020. Invasive species found in the management area include Japanese honeysuckle, Chinese privet, multi-flora rose and oriental bittersweet. There were large amounts of bittersweet sprayed in the cove area on the southwest side. A few Chinese privet were sporadically scattered throughout all of the area, but populations have been significantly reduced over the past two years. Rodeo and Vastlan were used at a rate of 4 oz per gallon and 2 oz per gallon respectively.
 - Kudzu patches in the area were treated on July 20, 2020. Kudzu located away from the creeks was treated using the maximum rate of Transline (21 oz / ac) while kudzu near water was treated using Vastlan at 6 oz / gallon of water. The kudzu locator map from 2018 has been updated to show the level of infestation found at each kudzu patch in 2020.

• Management Area B-

- Management Area B was treated on May 29, 2020. Invasive species found in the area include Japanese honeysuckle, kudzu, Chinese privet, multi-flora rose and oriental bittersweet. Several honeysuckle and bittersweet patches have become established along field edges. Kudzu patches were also found to be mostly pushed back to the higher reaches of trees. Rodeo and Vastlan were used at a rate of 4 oz per gallon and 2 oz per gallon respectively.
- On June 2, 2020 Eastern Forest Consultants treated the eastern and southern edges of Management Area B along field edges using the high volume ATV sprayer. Invasive species such as oriental bittersweet, kudzu, Japanese honeysuckle, multiflora rose, Chinese privet and morning glory were all treated in this area. Primary

targets were kudzu and oriental bittersweet that had climbed high into the trees. Rodeo and Vastlan were used at a rate of 4 oz per gallon and 2 oz per gallon respectively.

Kudzu patches in the area were treated on July 20, 2020. Kudzu located away from the creeks was treated using the maximum rate of Transline (21 oz / ac) while kudzu near water was treated using Vastlan at 6 oz / gallon of water. The kudzu locator map from 2018 has been updated to show the level of infestation found at each kudzu patch in 2020.

• Management Area C-

- Management Area C was treated May 29, 2020. Invasive species found in the management area include Japanese honeysuckle, kudzu, Chinese privet, multiflora rose and oriental bittersweet. The north side of the stream area was not heavily populated with invasive species. The south side of the stream was more heavily populated, but was still sporadic. Rodeo and Vastlan were used at a rate of 4 oz per gallon and 2 oz per gallon respectively.
- Kudzu patches in the area were treated on July 20, 2020. Kudzu located away from the creeks was treated using the maximum rate of Transline (21 oz / ac) while kudzu near water was treated using Vastlan at 6 oz / gallon of water. The kudzu locator map from 2018 has been updated to show the level of infestation found at each kudzu patch in 2020.

• Management Area D-

- Management Area D was treated May 29, 2020. Invasive species found in the management area include Japanese honeysuckle, Chinese privet, multi-flora rose and oriental bittersweet. Invasive species populations in this area were sporadic. Rodeo and Vastlan were used at a rate of 4 oz per gallon and 2 oz per gallon respectively.
- On June 2, 2020 Eastern Forest Consultants treated the area near the gravel driveway and powerline right-of-way intersection using the high volume ATV sprayer for kudzu, oriental bittersweet, multi-flora rose, Chinese privet, and Japanese honeysuckle, mainly targeting vines climbing high into the trees. Rodeo and Vastlan were used at a rate of 4 oz per gallon and 2 oz per gallon respectively.
- Kudzu patches in the area were treated on July 20, 2020. Kudzu located away from the creeks was treated using the maximum rate of Transline (21 oz / ac) while kudzu near water was treated using Vastlan at 6 oz / gallon of water. The kudzu locator map from 2018 has been updated to show the level of infestation found at each kudzu patch in 2020.

• Management Area E-

- Management Area E was treated on May 29. 2020. Invasive species found in the management area include Japanese honeysuckle, kudzu, Chinese privet, multiflora rose and Oriental bittersweet. The area was dense in honeysuckle, and bittersweet. Rodeo and Vastlan were used at a rate of 4 oz per gallon and 2 oz per gallon respectively.
- Kudzu patches in the area were treated on July 20, 2020. Kudzu located away from the creeks was treated using the maximum rate of Transline (21 oz / ac) while kudzu near water was treated using Vastlan at 6 oz / gallon of water. The kudzu locator map from 2018 has been updated to show the level of infestation found at each kudzu patch in 2020.

Other Notable Information:

 Kudzu vines property-wide that were still alive because they were too tall or got missed on the 7/20/2020 treatment were clipped with loppers during a 9/3/2020 site visit.

PESTICIDE/HERBICIDE APPLICATION RECORD

PROPERTY OWNER/MANAGER:

Name:	Matthew Reid NC DEQ DMS
Address:	5 Ravenscroft Drive, Suite 102 Asheville, NC 28801
Telephone #:	828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 5/29/2020; 0900-1600

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 4 Hours

EXPIRATION (DATE/TIME): 5/30/2020 @ 2000

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Privet, Honeysuckle, Multi-flora Rose, Kudzu, Bittersweet

ACREAGE, AREA, OR NUMBER OF PLANTS TREATED:

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name:	Rodeo
EPA Reg. Number:	62719-324
Amount Applied to Site:	144 oz
Application Rate:	4 oz/gallon
2) Brand/Common Name:	Vastlan
EPA Reg. Number:	62719-687
Amount Applied to Site:	72 oz
Application Rate:	2 oz/gallon
3) Brand/Common Name:	CWC 90 Surfactant
EPA Reg. Number:	N/A
Amount Applied to Site:	36 oz
Application Rate:	1 oz / gallon
4) Brand/Common Name:	Bullseye Spray Pattern Indicator
EPA Reg. Number:	N/A
Amount Applied to Site:	36 oz
Application Rate:	1 oz / gallon

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent:	Water
Amount Applied to Site:	36 gallons
Application Rate:	As Needed

2) Diluent: Amount Applied to Site: Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

WEATHER: Temp: 65-70 deg F Wind Speed: 0-5 mph Wind Direction: variable

NOTES: Joe not on site. Treated by Ben Balke, Caleb Cothron, and Luke Whiteside. All areas addressed except for spots with thick bittersweet and kudzu which will be treated later using ATV sprayer from field edges. Light rain fell around 12:30pm...not expected to have impact of effectiveness of treatment.

PESTICIDE/HERBICIDE APPLICATION RECORD

PROPERTY OWNER/MANAGER:

Name:	Matthew Reid NC DEQ DMS
Address:	5 Ravenscroft Drive, Suite 102 Asheville, NC 28801
Telephone #:	828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 6/2/2020; 0930-1500

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 4 Hours

EXPIRATION (DATE/TIME): 6/2/2020 @ 1900

PLANTS/SITES TREATED: Forest Edges

PRINCIPLE PESTS TO BE CONTROLLED: Privet, Honeysuckle, Multi-flora Rose, Kudzu, Bittersweet

ACREAGE, AREA, OR NUMBER OF PLANTS TREATED:

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name:	Rodeo
EPA Reg. Number:	62719-324
Amount Applied to Site:	280 oz
Application Rate:	4 oz/gallon
2) Brand/Common Name:	Vastlan
EPA Reg. Number:	62719-687
Amount Applied to Site:	140 oz
Application Rate:	2 oz/gallon
3) Brand/Common Name:	CWC 90 Surfactant
EPA Reg. Number:	N/A
Amount Applied to Site:	70 oz
Application Rate:	1 oz / gallon
4) Brand/Common Name:	Bullseye Spray Pattern Indicator
EPA Reg. Number:	N/A
Amount Applied to Site:	70 oz
Application Rate:	1 oz / gallon

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent:	Water
Amount Applied to Site:	70 gallons
Application Rate:	As Needed

2) Diluent: Amount Applied to Site: Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: ATV Sprayer

WEATHER:

Temp: 70-85 deg F

Wind Speed: 5-15 mph

Wind Direction: mostly due north

NOTES: Sprayed with Ben Balke. Mostly treated wood edges on north and south of management unit B

PESTICIDE/HERBICIDE APPLICATION RECORD

PROPERTY OWNER/MANAGER:

Name:	Matthew Reid NC DEQ DMS
Address:	5 Ravenscroft Drive, Suite 102 Asheville, NC 28801
Telephone #:	828-231-7912

ADDRESS/LOCATION OF APPLICATION SITE (if different than above):

Address/Location: Moore's Fork Mitigation Site – Surry County

CERTIFIED APPLICATOR:

Joseph M. Secoges (Applicator Cert. # 026-34911 / Consultant Cert. # 030-1312) Eastern Forest Consultants LLC P.O. Box 1577 Clemmons, NC 27012 240-446-1583

DATE + START/END TIME OF APPLICATION: 7/20/2020; 0930-1500

RESTRICTED ENTRY INTERVAL (REI):

DURATION (# OF HOURS): 12 Hours

EXPIRATION (DATE/TIME): 7/21/2020 @ 0300

PLANTS/SITES TREATED: Upland Area around Stream

PRINCIPLE PESTS TO BE CONTROLLED: Kudzu

ACREAGE, AREA, OR NUMBER OF PLANTS TREATED:

Spot Spray As Needed

IDENTIFICATION/AMOUNT OF PESTICIDES USED:

1) Brand/Common Name:	Transline
EPA Reg. Number:	62719-259
Amount Applied to Site:	21 oz
Application Rate:	21 oz/acre
2) Brand/Common Name:	Vastlan
EPA Reg. Number:	62719-687
Amount Applied to Site:	18 oz
Application Rate:	6 oz/gallon
3) Brand/Common Name:	CWC 90 Surfactant
EPA Reg. Number:	N/A
Amount Applied to Site:	15 oz
Application Rate:	1 oz / gallon
4) Brand/Common Name:	Bullseye Spray Pattern Indicator
EPA Reg. Number:	N/A
Amount Applied to Site:	15 oz
Application Rate:	1 oz / gallon

DILUENTS USED (Water, Oil, Fuel, etc.):

1) Diluent:	Water
Amount Applied to Site:	15 gallons
Application Rate:	As Needed

2) Diluent: Amount Applied to Site: Application Rate:

TYPE OF APPLICATION EQUIPMENT USED: Back-pack Sprayers

WEATHER:

Temp:	85-95 deg F
Wind Speed:	0-5 mph
Wind Direction:	variable

NOTES: Joe not on site. Treated by John Smith, Caleb Cothron, and Luke Whiteside. Transline was used away from creek. Kudzu near creek was treated with Vastlan.

